nhóm những ai mê thảo luận vũ trụ

Định nghĩa Vũ trụ là bao gồm mọi thành phần của nó cũng như không gianthời gian.[8][9][10][11] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọivật chấtnăng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại.[2]Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.[12] Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ họctinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đạitriết học Ấn Độ.[13][14] Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicusvà, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng đượcIsaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trời nằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả địnhđồng nhấtnhư nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ 20 về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụ cho thấy Vũ trụ phải có thời điểm khởi đầu.[15] Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc[16] cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm.[1]

Có nhiều giả thiết đối nghịch nhau về Số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau.[17][18]
 
images
images





Sao Kim
hay Kim tinh (chữ Hán: 金星), còn gọi là sao Thái Bạch (太白),Thái Bạch Kim tinh (太白金星) (thường dùng khi xem tướng mệnh), là hành tinh thứ hai trong hệ Mặt Trời, tự quay quanh nó với chu kỳ 224,7 ngày Trái Đất.[10] Xếp sau Mặt Trăng, nó là thiên thể tự nhiên sáng nhất trong bầu trời tối, với cấp sao biểu kiến bằng −4.6, đủ sáng để tạo nên bóng trên mặt nước.[12] Bởi vì Sao Kim là hành tinh phía trong tính từ Trái Đất, nó không bao giờ xuất hiện trên bầu trời mà quá xa Mặt Trời: góc ly giác đạt cực đại bằng 47,8°. Sao Kim đạt độ sáng lớn nhất ngay sát thời điểm hoàng hôn hoặc bình minh, do vậy mà dân gian còn gọi là sao Hôm, khi hành tinh này mọc lên lúc hoàng hôn, và sao Mai, khi hành tinh này mọc lên lúc bình minh.



Sao Kim được xếp vào nhóm hành tinh đất đá và đôi khi người ta còn coi nó là "hành tinh chị em" với Trái Đất do kích cỡ, gia tốc hấp dẫn, tham số quỹ đạo gần giống với Trái Đất. Tuy nhiên, người ta đã chỉ ra rằng nó rất khác Trái Đất trên những mặt khác. Sao Kim bị bao bọc bởi lớp mây dày có tính phản xạ cao chứa axít sunfuric[13], và khiến chúng ta không thể quan sát bề mặt của nó dưới bước sóng ánh sáng khả kiến. Mật độ không khí trong khí quyển của nó lớn nhất trong số bốn hành tinh đất đá, thành phần chủ yếu là cacbon điôxít. Áp suất khí quyển tại bề mặt hành tinh cao gấp 92 lần so với của Trái Đất. Với nhiệt độ bề mặt trung bình bằng 735 K (462 °C), Sao Kim là hành tinh nóng nhất trong Hệ Mặt Trời. Nó không có chu trình cacbon để đưa cacbon trở lại đá và đất trên bề mặt, do vậy không thể có một tổ chức sống hữu cơ nào có thể hấp thụ nó trong sinh khối. Một số nhà khoa học từng cho rằng Sao Kim đã có những đại dương trong quá khứ,[14]nhưng đã bốc hơi khi nhiệt độ hành tinh tăng lên do hiệu ứng nhà kính mất kiểm soát.[15] Nước có thể đã bị quang ly, và bởi vì không có từ quyển hành tinh, hiđrô tự do có thể thoát vào vũ trụ bởi tác động của gió Mặt Trời.[16]Toàn bộ bề mặt của Sao Kim là một hoang mạc khô cằn với đá và bụi và có lẽ vẫn còn núi lửa hoạt động trên hành tinh này.


Đặc trưng

Sao Kim là một trong bốn hành tinh đất đá trong hệ Mặt Trời. Theo khối lượng và kích thước, nó gần giống với Trái Đất và có lúc gọi là "hành tinh chị em" hoặc "hành tinh sinh đôi" với Trái Đất.[17] Đường kính của Sao Kim bằng 12.092 km (chỉ nhỏ hơn 650 km của Trái Đất) và khối lượng của nó bằng 81,5% khối lượng Trái Đất. Địa mạo trên bề mặt hành tinh khác xa so với địa hình trên Trái Đất, do hành tinh có một bầu khí quyển cacbon điôxít rất dày. Tổng khối lượng của cacbon điôxít chiếm tới 96,5% khối lượng khí quyển, và đa số khối lượng còn lại là 3,5% của nitơ.[18]



Địa lý

Nghiên cứu bề mặt Sao Kim vẫn còn có nhiều vấn đề mang tính phỏng đoán cho đến khi một số bí mật của nó được khám phá trong ngành khoa học hành tinh ở thế kỷ 20. Bề mặt hành tinh đã được vẽ chi tiết từ tàuMagellan năm 1990–91. Trên bản đồ hành tinh hiện lên những chi tiết cho thấy khả năng có hoạt động của núi lửa, và sự có mặt của lưu huỳnh trong khí quyển còn cho thấy khả năng có một số vụ phun trào gần đây.[19][20]

Khoảng 80% diện tích bề mặt Sao Kim bao phủ bởi những đống bằng núi lửa phẳng, hay 70% đồng bằng có những rặng núi và 10% đồng bằng có thùy.[21] Hai "lục địa" cao nguyên chiếm phần còn lại của diện tích bề mặt, một lục địa nằm ở bán cầu bắc và lục kia nằm ở ngay phía nam xích đạo hành tinh. Các nhà khoa học đặt tên lục địa phía bắc là Ishtar Terra, theo tên thần Ishtar, thần tình yêu của người Babylon, lục địa có diện tích xấp xỉ Australia. Ngọn Maxwell Montes, núi cao nhất trên Sao Kim, nằm ở lục địa Ishtar Terra. Chiều cao của nó xấp xỉ 11 km tính từ độ cao trung bình của bề mặt hành tinh. Lục địa bán cầu nam có tên Aphrodite Terra, theo tên của thần tình yêu trong thần thoại Hy Lạp, và là lục địa cao nguyên lớn nhất với diện tích xấp xỉ lục địa Nam Mỹ. Có rất nhiều dấu vết đứt gãy địa chất ở lục địa này.[22]

Sự thiếu đi chứng cứ về những dòng chảy dung nham cũng như những miệng núi lửa (caldera) vẫn còn là một bí ẩn đối với các nhà khoa học. Hành tinh này có một vài hố va chạm, và do đó bề mặt hành tinh còn tương đối trẻ, xấp xỉ khoảng 300–600 triệu năm tuổi.[23][24] Ngoài các hố va chạm, núi và thung lũng thường gặp trên các hành tinh đất đá, Sao Kim cũng có những nét đặc trưng riêng. Một trong số đó là những địa hình dạng núi lửa phẳng gọi là "farra", nhìn giống như bánh đa với đường kính 20–50 km, và cao 100–1.000 m; hệ thống những vết nứt hướng về tâm hình cánh sao gọi là "novae"; những vết nứt gãy đặc trưng hướng về tâm và bao bởi những vết nứt đồng tâm giống như mạng nhện hay gọi là "arachnoids"; và "coronae", những đường nứt gãy vòng tròn đôi khi bao quanh chỗ lõm. Những đặc trưng riêng này có nguồn gốc liên quan đến núi lửa.[25]

Đa số các đặc điểm trên bề mặt Sao Kim được đặt tên theo phụ nữ trong lịch sử và thần thoại.[26] Ngoại trừ ngọn Maxwell Montes, theo tên của James Clerk Maxwell, và những vùng cao nguyên Alpha Regio, Beta Regio và Ovda Regio. Ba tên gọi sau được đặt trước khi hệ thống tên gọi hiện tại do Hiệp hội Thiên văn Quốc tế áp dụng, cơ quan ban hành quy định và chứng nhận tên gọi cho các thiên thể và vật thể trong thiên văn học.[27]

Kinh độ địa lý của các đặc điểm trên bề mặt Sao Kim được lấy theo kinh tuyến gốc của nó. Ban đầu các nhà khoa học lấy kinh tuyến gốc đi qua một điểm sáng trên ảnh radar tại tâm của đặc điểm Eve hình oval, nằm ở phía nam của Alpha Regio.[28] Sau khi phi vụ Venera hoàn thành, kinh tuyến gốc được định nghĩa lại khi nó đi qua đỉnh trung tâm của hố va chạm Ariadne.[29][30]

Địa chất bề mặt

Ảnh radar toàn cầu bề mặt Sao Kim từ tàu Magellan chụp trong giai đoạn 1990–1994

Địa mạo Sao Kim hiện lên cho thấy có sự ảnh hưởng của hoạt động núi lửa. Sao Kim từng có số núi lửa nhiều như của Trái Đất, và có 167 núi lửa có đường kính trên 100 km. Vùng chứa nhiều núi lửa như thế duy nhất trên Trái Đất tại đảo Lớncủa Hawaii.[25] Đây không phải vì Sao Kim có nhiều hoạt động núi lửa hơn Trái Đất mà bởi vì lớp vỏ của nó già hơn. Vỏ đại dương của Trái Đất liên tục được tái tạo thông qua sự hút chìm tại biên giới giữa các mảng kiến tạo, và có tuổi trung bình bằng 100 triệu năm,[31] trong khi các nhà khoa học tính toán bề mặt Kim Tinh có tuổi 300–600 triệu năm.[23][25]

Có một số manh mối thể hiện vẫn còn hoạt động núi lửa trên Sao Kim. Trong chương trình Venera của Liên Xô, các tàu Venera 11 và Venera 12 đã ghi nhận được các luồng tia sét, và Venera 12 còn ghi được tiếng sét nổ mạnh ngay sau khi nó đổ bộ. Tàu Venus Express của Cơ quan vũ trụ châu Âu cũng chụp được hình ảnh tia sét trong lớp khí quyển trên cao.[32] Có thể tro bay ra từ núi lửa đã gây ra sét trong bầu khí quyển hành tinh. Một dữ liệu khác đến từ mật độ tập trung của lưu huỳnh điôxit trong khí quyển, mà các nhà khoa học nhận thấy đã giảm đi 10 lần trong giai đoạn 1978 đến 1986. Hiện tượng này có thể giải thích bằng núi lửa hoạt động trước đó đã phun lưu huỳnh điôxit ra khí quyển.[33]


Hố va chạm trên bề mặt Sao Kim (ảnh tái dựng từ dữ liệu quan trắc radar)
Có khoảng 1.000 hố va chạm phân bố khắp bề mặt Sao Kim. Trên những thiên thể khác như Trái Đất hay Mặt Trăng, các hố va chạm thể hiện quá trình biến mất dần của chúng. Trên Mặt Trăng, sự biến mất là do những thiên thạch theo thời gian rơi xuống làm mờ đi hố già tuổi hơn, trong khi trên Trái Đất, miệng hố bị phong hóa bởi mưa và gió. Trên Sao Kim, khoảng 85% hố va chạm vẫn còn ở trạng thái nguyên thủy. Số lượng hố va chạm, cùng với điều kiện được "bảo tồn" tốt của chúng, cho thấy hành tinh trải qua lần tái tạo bề mặt gần đây nhất cách khoảng 300–600 triệu năm trước,[23][24] đi kèm với sự tắt dần của các núi lửa.[34] Trong khi lớp vỏ Trái Đất liên tục chuyển động, các nhà khoa học nghĩ rằng trên Sao Kim các vỏ không có sự di chuyển này. Không có hoạt động kiến tạo mảng để tiêu tán nhiệt ra khỏi lớp phủ, thay vào đó Sao Kim trải qua chu trình tuần hoàn trong đó nhiệt độ lớp phủ tăng cao cho đến khi đạt nhiệt độ tới hạn làm yếu/tan chảy lớp vỏ. Do vậy trong chu kỳ trên 100 triệu năm, sự hút chìm xuất hiện trên hầu như toàn bộ hành tinh, làm tái tạo mới hoàn toàn bề mặt lớp vỏ.[25]

Các hố va chạm trên Sao Kim có đường kính từ 3 km đến 280 km. Không có hố nào với đường kính nhỏ hơn 3 km, bởi vì do khí quyển dày đặc cản trở các vật thể rơi từ ngoài vũ trụ. Các vật với động năng nhỏ hơn một giá trị xác định bị h.ãm chậm lại khi nó rơi vào bầu khí quyển, và nếu động năng hoặc kích cỡ nhỏ chúng không tạo ra một hố va chạm đưọc.[35] Mưa axit: Thành phần khí quyển chủ yếu của sao Kim là cacbonic và những lớp mây nóng bỏng dày đặc chứa sunfuric đã hình thành các trận mưa axit sunfuric tàn phá bề mặt hành tinh. Ngoài ra địa hình của Sao Kim Khoảng 80% diện tích bề mặt Sao Kim bao phủ bởi những đống bằng núi lửa phẳng, hay 70% đồng bằng có những rặng núi và 10% đồng bằng có thùy. Do áp lực khí quyển đè lên hành tinh này khá lớn nên ngay cả khi các thiên thạch rơi vào hành tinh cũng không tạo ra nhiêu biến dạng vì đất đá bị không khí ném chặt xuống khiến chúng không thể rơi vãi lung tung.[36]

Cấu trúc bên trong

Minh họa một khả năng cho cấu trúc bên trong Sao Kim.
Không có những dữ liệu địa chấn hoặc về mô men quán tính hành tinh, các nhà khoa học có ít thông tin trực tiếp liên quan đến cấu trúc bên trong và địa hóa họccủa Sao Kim.[37] Sự gần giống về đường kính và khối lượng riêng giữa Sao Kim và Trái Đất gợi ra khả năng chúng có cấu trúc bên trong cũng tương tự nhau: gồm lõi hành tinh, lớp phủ, và lớp vỏ. Giống như Trái Đất, lõi Sao Kim ít nhất ở trạng thái lỏng một phần bởi vì hai hành tinh có quá trình lạnh/tiêu tán nhiệt bên trong với cùng một tốc độ.[38] Đường kính nhỏ hơn của Sao Kim cho thấy những phần sâu bên trong hành tinh chịu áp suất nhỏ hơn so với của Trái Đất. Sự khác nhau chính yếu giữa hai hành tinh đó là các nhà khoa học chưa có chứng cứ về hoạt động kiến tạo mảng trên Sao Kim, có thể bởi vì lớp vỏ quá cứng để có thể xảy ra hút chìmmảng lục địa, mà không có nước lỏng để chúng có thể trượt lên nhau. Kết quả này dẫn đến giảm sự mất mát nội nhiệt hành tinh, kéo dài thời gian hành tinh bị lạnh đi và có thể là một phần giải thích cho hành tinh không có một từ trường toàn cầu.[39] Thay vì vậy, nội nhiệt của Sao Kim bị mất trong quá trình tái tạo bề mặt tuần hoàn theo chu kỳ hàng trăm triệu năm.[23]

Khí quyển và khí hậu


Khí quyển Sao Kim chụp năm 1979 qua bước sóng tử ngoại từ tàu Pioneer Venus Orbiter.

Quang phổ hấp thụ của một khí hỗn hợp tương đương với khí quyển Trái Đất

và quang phổ khí quyển Sao Kim dựa trên dữ liệu từ HITRAN[40] trên Website.[41] Màu lục – hơi nước, đỏ – cacbon điôxít, WN – số sóng (chú ý: những màu khác có ý nghĩa khác, số sóng thấp hơn về bên phải, cao hơn về bên trái.
Sao Kim có khí quyển rất dày, chứa chủ yếu CO2 và lượng nhỏ N2. Khối lượng khí quyển của hành tinh này lớn gấp 93 lần so với khối lượng khí quyển của Trái Đất, trong khi áp suất bề mặt cao gấp 92 so với của Trái Đất—áp này tương đương với độ sâu gần bằng 1 kilômét tính từ bề mặt đại dương trên Trái Đất. Khối lượng riêng/mật độ của không khí tại nơi gần bề mặt bằng 65 kg/m³ (bằng 6,5% của nước). Khí quyển giàu CO2, cùng với đám mây dày SO2, tạo ra hiệu ứng nhà kínhmạnh nhất trong các hành tinh trong Hệ Mặt Trời, với nhiệt độ tại bề mặt ít nhất bằng 462 °C.[10][42] Điều này khiến cho bề mặt của Sao Kim nóng hơn so với củaSao Thủy, với nhiệt độ bề mặt cực tiểu −220 °C và cực đại bằng 420 °C,[43] ngay cả khi khoảng cách từ Sao Kim đến Mặt Trời gần bằng hai lần khoảng cách đó đến Sao Thủy và do vậy hành tinh này chỉ nhận được khoảng 25% năng lượng bức xạ Mặt Trời so với năng lượng Sao Thủy nhận được. Do vậy người ta thường miêu tả bề mặt Sao Kim là địa ngục nóng rực.[44] Nhiệt độ này thậm chí còn cao hơn nhiệt độ cần thiết trong một số quá trình khử trùng.

Nghiên cứu của các nhà khoa học cho thấy hàng tỷ năm trước khí quyển của Sao Kim từng khá giống với khí quyển Trái Đất hơn so với ngày nay, và một số người giả thuyết đã tồn tại nước lỏng trên bề mặt hành tinh, nhưng sau chu kỳ từ 600 triệu đến vài tỷ năm,[45] hiệu ứng nhà kính mất kiểm soát (runaway greenhouse effect) khiến bốc hơi hoàn toàn lượng nước này, và sinh ra lượng khí nhà kính tới mức giới hạn trong bầu khí quyển của nó.[46] Mặc dù những điều kiện vật lý trên hành tinh không còn thích hợp để duy trì những dạng sống nguyên thủy như của Trái Đất nhưng có thể trước đây chúng đã từng tồn tại, và khả năng có những dạng sống bậc thấp tồn tại trong trung tầng và thượng tầng khí quyển vẫn chưa bị bác bỏ.[47]

Quán tính nhiệt (thermal inertia) và sự truyền nhiệt bởi gió trong khí quyển gần bề mặt cho thấy nhiệt độ bề mặt Sao Kim không biến đổi lớn giữa phía ngày và đêm, cho dù hành tinh có tốc độ tự quay cực thấp. Tốc độ gió gần bề mặt là thấp, thổi với vận tốc vài kilômét trên giờ, nhưng do mật độ khí quyển gần bề mặt cao, luồng gió tác động một lực lớn lên những chướng ngại vật nó thổi qua, và vận chuyển bụi và đá nhỏ đi khắp bề mặt hành tinh. Chỉ riêng điều này cũng khiến cho con người đi bộ trên bề mặt hành tinh này cũng rất khó khăn, ngay cả khi nhiệt độ, áp suất và sự thiếu hụt ôxy không còn là một vấn đề.[48]

Bên trên tầng khí quyển CO2 đậm đặc là những lớp mây chứa chủ yếu SO2 và những giọt axít sunfuric.[49][50] Những đám mây này phản xạ và tán xạ khoảng 90% ánh sáng Mặt Trời đẩy ngược chúng vào không gian vũ trụ, và ngăn cản các nhà khoa học quan sát bề mặt hành tinh này. Các đám mây vĩnh cửu bao phủ toàn bộ Sao Kim có nghĩa rằng mặc dù Sao Kim gần Mặt Trời hơn so với Trái Đất, bề mặt hành tinh không được chiếu sáng nhiều. Những cơn gió mạnh ở những đám mây trên cao với vận tốc 300 km/h có thể thổi đi vòng quanh hành tinh trong thời gian từ bốn đến năm ngày.[51] Những cơn gió trong khí quyển Sao Kim có tốc độ cao gấp 60 lần tốc độ tự quay của hành tinh này, trong khi đó những cơn gió mạnh nhất trên Trái Đất có tốc độ chỉ bằng 10% đến 20% tốc độ tự quay của nó.[52]

Quá trình đẳng nhiệt trong khí quyển Sao Kim rất hữu hiệu; nó duy trì sự không đổi của nhiệt độ khí quyển không những giữa phía ngày và đêm mà còn giữa vùng xích đạo và hai vùng cực.[1][53] Độ nghiêng trục quay của Sao Kim nhỏ (ít hơn 3 độ, so với 23 độ của Trái Đất) cũng là một nguyên nhân làm sự biến đổi nhiệt độ theo mùa của hành tinh là rất nhỏ.[54] Sự biến đổi rõ rệt của nhiệt độ chỉ xảy ra theo độ cao. Năm 1995, tàu Magellan chụp được ảnh những vùng có độ phản xạ cao tại đỉnh của các ngọn núi cao nhất mà tại những vùng này có phân bố những chất có tính phản xạ như tuyết ở trên Trái Đất. Các nhà khoa học lập luận rằng chất này hình thành trong quá trình tương tự như tuyết, mặc dù trong điều kiện nhiệt độ rất cao. Quá nhiều chất bay hơi ngưng tụ trên gần bề mặt sẽ đẩy khí bay lên và bị lạnh đi hình thành tại những nơi cao hơn, và tại đây chúng lại rơi xuống như mưa. Các nhà khoa học vẫn chưa biết chính xác chất này là gì, nhưng có thể làtelua cho tới chì sunfit (galena).[55]

Các đám mây trên Sao Kim cũng phóng tia sét nhiều như trên Trái Đất.[56] Sự tồn tại của sét đã gây tranh cãi khi lần đầu tiên tàu Venera của Liên Xô phát hiện ra những chớp sáng này. Năm 2006–07 tàu Venus Express chụp được rõ ràng sóngelectron điện từ, dấu hiệu cho thấy có tia sét. Hình ảnh xuất hiện rời rạc của chúng cho thấy những tia sét này đi kèm với hoạt động của thời tiết. Tốc độ tia sét bằng ít nhất một nửa của nó trên Trái Đất.[56] Năm 2007, tàu Venus Express phát hiện ra hai xoáy khí quyển khổng lồ tồn tại ở cực nam hành tinh.[57][58]

Một khám phá khác từ tàu Venus Express trong năm 2011 đó là có một tầng ozone ở trên cao khí quyển của Sao Kim.[59]

Ngày 29 tháng 1 năm 2013, các nhà khoa học ESA thông báo tầng điện li của Sao Kim thổi hướng ra ngoài theo cách tương tự như "đuôi các hạt ion phóng ra từ một sao chổi dưới những điều kiện tương tụ."[60][61]

Từ trường và lõi hành tinh[sửa | sửa mã nguồn]

So sánh kích cỡ bốn hành tinh: Sao Thủy, Sao Kim, Trái Đất, và Sao Hỏa với màu thực.
Năm 1967, tàu Venera-4 phát hiện ra từ trường Sao Kim yếu hơn nhiều so với của Trái Đất. Từ trường này cảm ứng bởi tương tác giữa tầng điện ly và gió Mặt Trời,[62][63] hơn là bởi chu trình dynamo trong lõi hành tinh giống như từ trường của Trái Đất. Từ quyển cảm ứng nhỏ của Sao Kim không thể bảo vệ bầu khí quyển của nó tránh khỏi sự bắn phá của các tia vũ trụ. Bức xạ này cũng là một trong các nguyên nhân gây ra sự phóng điện tia sét giữa các đám mây.[64]

Các nhà khoa học đã ngạc nhiên khi Sao Kim không có từ trường mạnh (từ trường Sao Kim gần như bằng 0) khi nó có cùng kích cỡ với Trái Đất, và họ cũng đã nghĩ nó cũng có một lõi nóng chảy-yếu tố quan trọng trong lý thuyết dynamo. Lý thuyết dynamo có ba yếu tố chính: Đó là phải có một chất lỏng dẫn điện, quay, và chuyển động đối lưu. Lõi hành tinh có khả năng dẫn điện và trong khi hành tinh tự quay rất chậm, các mô phỏng trên máy tính cho thấy nó vẫn đủ để tạo ra sự quay cần thiết trong thuyết dynamo.[65][66] Từ đây chúng ta có thể thấy dynamo không hoạt động bởi vì không có sự đối lưu trong lõi hành tinh. Trên Trái Đất, sự đối lưu xuất hiện trong lớp vật liệu dạng lỏng phủ bên ngoài lõi có tính đối lưu bởi vì đáy của lớp phủ nóng hơn phía bên trên gần bề mặt. Trên Sao Kim, sự kiện tái tạo bề mặt toàn cầu có thể làm tắt sự kiến tạo mảng và dẫn đến giảm thông lượng nhiệt truyền qua lớp vỏ. Điều này làm nhiệt độ lớp phủ tăng, do đó làm giảm thông lượng nhiệt qua lõi hành tinh. Kết quả là, không có quá trình dynamo địa hành tinh để sinh ra từ trường. Thay vào đó, năng lượng nhiệt từ lõi làm nóng lại lớp vỏ.[67]

Các nhà khoa học nêu ra có một khả năng Sao Kim không có lõi cứng bên trong,[68] hoặc hiện tại lõi của nó không còn quá trình tiêu tán nhiệt, do vậy toàn bộ phần vật chất lỏng quay lõi có nhiệt độ xấp xỉ bằng nhau. Một khả năng khác đó là lõi của nó đã hoàn toàn hóa rắn. Trạng thái của lõi phụ thuộc cao vào độ tập trung của lưu huỳnh, mà cho tới nay các nhà khoa học chưa biết được giá trị này.[67]

Từ quyển rất yếu bao quanh Sao Kim có nghĩa là gió Mặt Trời tương tác trực tiếp với tầng thượng quyển của hành tinh. Tại đây, các ion hiđrô và ôxy liên tục được sinh ra từ sự phân ly các phân tử trung hòa do tác động của tia tử ngoại. Tiếp đó gió Mặt Trời cung cấp năng lượng đủ lớn giúp cho những ion này có vận tốc đủ để thoát ra khỏi trường hấp dẫn của hành tinh. Sự mất mát này dẫn đến kết quả lượng ion các nguyên tố nhẹ như hiđrô, heli, và ôxy liên tục giảm đi, trong khi các phân tử khối lượng lớn hơn như cacbon điôxít vẫn nằm lại trong khí quyển hành tinh. Sự xói mòn khí quyển hành tinh bởi gió Mặt Trời dẫn đến khí quyển mất đa số lượng nước trong suốt lịch sử hàng tỷ năm của hành tinh này. Quá trình này cũng làm tăng tỷ lệ deuteri so với hiđrô trong tầng thượng quyển cao gấp 150 lần của tỷ số này ở tầng dưới của khí quyển.[69]

Quỹ đạo và sự tự quay

Hình minh họa quỹ đạo Sao Kim từ 1/1/2008 đến 1/1/2009 quay quanh Mặt Trời khoảng 108 triệu kilômét (khoảng 0.7 AU) và hoàn thành xong một chu kỳ quỹ đạo mỗi 224,65 ngày. Venus là hành tinh thứ hai từ Mặt Trời và quỹ đạo quanh mặt trời ít hơn 1.6 lần (đường bay màu vàng) so với 365 ngày của Trái Đất (đường bay màu xanh)

Quỹ đạo và vị trí của Sao Kim cách đều khoảng 10 ngày Trái Đất trong khoảng thời gian 0 đến 250 ngày. Trên hình vẽ này, Sao Kim có chiều tự quay quanh trục cùng chiều kim đồng hồ và quay quanh Mặt Trời theo chiều ngược chiều kim đồng hồ.


250px--VenusAnimation.ogv.jpg
Minh họa sự tự quay của hành tinh.
Quỹ đạo Sao Kim quanh Mặt Trời có khoảng cách trung bình bằng 0,72 AU(108.000.000 km; 67.000.000 mi), và hoàn thành một chu kỳ quỹ đạo khoảng 224,65 ngày. Mặc dù mọi hành tinh có quỹ đạo hình elip, quỹ đạo Sao Kim có dạng gần tròn nhất, với độ lệch tâm quỹ đạo nhỏ hơn 0,01.[1] Do Sao Kim nằm giữa Trái Đất và Mặt Trời, có một vị trí của hành tinh đó là giao hội trong, khi đó khoảng cách giữa nó với Trái Đất là khoảng cách ngắn nhất từ Trái Đất đến các hành tinh khác với giá trị 41 triệu km.[1] Trung bình, hai hành tinh đạt đến vị trí giao hội trong khoảng thời gian cách nhau 584 ngày.[1] Do hiện nay độ lệch tâm quỹ đạo của Trái Đất đang giảm dần, khoảng cách cực tiểu này sẽ tăng nhiều hơn trong hàng chục nghìn năm tới. Từ năm 1 tới 5383, đã và sẽ có tổng cộng 526 lần tiếp cận với khoảng cách nhỏ hơn 40 triệu km; sau đó không có một lần nào với khoảng cách nhỏ hơn 40 triệu km trong vòng 60.158 năm.[70] Trong thời gian có độ lệch tâm quỹ đạo lớn hơn, Sao Kim có thể đến gần Trái Đất với khoảng cách bằng 38,2 triệu km.[1]

Mọi hành tinh trong Hệ Mặt Trời quay trên quỹ đạo theo chiều ngược chiều kim đồng hồ khi nhìn từ trên cực bắc của Mặt Trời. Hầu hết các hành tinh có chiều tự quay quanh trục của nó theo chiều ngược chiều kim đồng hồ, nhưng Sao Kim lại quay quanh trục cùng chiều kim đồng hồ (gọi là sự quanh nghịch hành) với khoảng thời gian 243 ngày Trái Đất—tốc độ tự quay chậm nhất của mọi hành tinh trong Hệ Mặt Trời. Do vậy một "ngày" (thời gian sao-sidereal day) trên Sao Kim dài hơn một "năm" của Sao Kim (243 ngày so với 224,7 ngày Trái Đất). Tại đường xích đạo Sao Kim tốc độ tự quay của nó bằng bằng 6,5 km/h, trong khi tốc độ quay tại xích đạo của Trái Đất bằng 1.670 km/h.[71] Các nhà khoa học cũng nhận thấy tốc độ tự quay của Sao Kim đã chậm đi 6,5 phút trên một "ngày" Sao Kim kể từ khi tàu Magellan tới hành tinh tháng 10 năm 1990.[72] Bởi vì sự quay nghịch hành, độ dài một ngày Mặt Trời (solar day) trên Sao Kim ngắn hơn nhiều ngày sao (sidereal day), bằng 116,75 ngày Trái Đất (ngày mặt trời của Sao Kim ngắn hơn ngày mặt trời của Sao Thủy bằng 176 ngày Trái Đất); một năm Sao Kim bằng 1,92 ngày mặt trời Sao Kim.[11]Nếu một người có thể đứng trên Sao Kim và bầu khí quyển khá loãng, anh/chị ta sẽ thấy Mặt Trời mọc ở đằng tây và lặn ở đằng đông.[11]

Sao Kim có thể đã hình thành từ một đám mây phân tử với chu kỳ quay và độ nghiêng trục quay khác, và nó đạt đến trạng thái hiện tại bởi vì sự thay đổi tốc độ sự tự quay một cách hỗn loạn do nhiễu loạn giữa các hành tinh và hiệu ứng thủy triều tác dụng lên khí quyển dày đặc của nó, sự thay đổi trở thành đáng kể sau thời gian hàng tỷ năm lịch sử. Chu kỳ tự quay của Sao Kim thể hiện trạng thái cân bằng giữa hiện tượng khóa thủy triều do ảnh hưởng hấp dẫn của Mặt Trời, có xu hướng làm chậm sự tự quay của hành tinh, và bởi hiện tượng thủy triều trong khí quyển hành tinh do tác động nhiệt của bức xạ năng lượng Mặt Trời làm nóng bầu khí quyền dày của hành tinh trong quá khứ.[73][74] Một điểm kỳ lạ giữa chu kỳ quỹ đạo và chu kỳ tự quay của Sao Kim đó là khoảng thời gian trung bình 584 ngày giữa hai lần tiếp cận gần nhau với Trái Đất bằng gần như chính xác 5 ngày mặt trời Sao Kim.[75] Tuy nhiên, giả thuyết cộng hưởng quỹ đạo và sự tự quay của Sao Kim với Trái Đất đã bị bác bỏ.[76]

Sao Kim không có vệ tinh tự nhiên,[77] mặc dù tiểu hành tinh 2002 VE68 hiện tại đang có mối liên hệ giả quỹ đạo với hành tinh này.[78][79] Bên cạnh giả vệ tinh này, nó cũng có hai vật thể cùng quay trên quỹ đạo, 2001 CK32 và 2012 XE133. Trong thế kỷ 17, nhà thiên văn Giovanni Cassini công bố ông đã phát hiện ra một vệ tinh quay quanh Sao Kim, mà ông đặt tên là Neith và đã có nhiều cố gắng quan sát và công bố trong suốt 200 năm sau đó, nhưng đa số những phát hiện kiểu này là do nhầm lẫn vệ tinh giả thuyết với mộtngôi sao ở xa khi Sao Kim đến gần nó. Trong một mô hình nghiên cứu của Alex Alemi David Stevenson năm 2006 về Hệ Mặt Trời sơ khai tại Học viện công nghệ California cho thấy Sao Kim có thể đã từng có ít nhất một Mặt Trăng hình thành từ sự va chạm giữa nó và một thiên thể khác hàng tỷ năm trước.[80] Khoảng thời gian 10 triệu năm sau cú va chạm, theo nghiên cứu của họ, một vụ va chạm khác xảy ra làm đảo ngược hướng tự quay của hành tinh và làm cho vệ tinh tự nhiên của Sao Kim dần dần theo thời gian tiến về phía hành tinh và cuối cùng va chạm vào Sao Kim.[81] Nếu cú va chạm sau sinh ra một Mặt Trăng khác, nó cũng sẽ bị rơi và hấp thụ theo như cách của vệ tinh trước. Một phương án giải thích khác, do ảnh hưởng hấp dẫn thủy triều rất mạnh của Mặt Trời dẫn đến sự mất ổn định trong quỹ đạo của vệ tinh quay quanh Sao Kim hoặc Sao Thủy, nên theo thời gian hai hành tinh này hoặc hút và va chạm với vệ tinh hoặc vệ tinh bay thoát khỏi lực hút hấp dẫn của chúng.[77]

Quan sát


Sao Kim luôn luôn sáng hơn bất kỳ một ngôi sao sáng nào ngoài Hệ Mặt Trời, ánh sáng của nó có thể phản chiếu từ mặt đại dương.

Pha của Sao Kim và sự biến đổi pha theo đường kính biểu kiến của nó.
Sao Kim luôn luôn sáng hơn bất kỳ một ngôi sao nào ngoài Mặt Trời. Độ sáng lớn nhất của nó, cấp sao biểu kiến có giá trị −4,9,[8]xuất hiện ở pha hình lưỡi liềm khi nó ở gần Trái Đất. Sao Kim mờ dần về cấp sao −3 khi nó ngược sáng so với Mặt Trời.[7] Hành tinh này đủ sáng để có thể nhìn thấy vào buổi trưa khi trời quang đãng vào thời điểm thích hợp,[82] và nó có thể dễ dàng nhìn thấy khi Mặt Trời ở dưới đường chân trời. Là một hành tinh ở phía trong, góc ly giác của nó luôn luôn nằm dưới góc 47° khi nhìn về phía Mặt Trời.[9]

Sao Kim "vượt qua" Trái Đất cứ mỗi 584 ngày Trái Đất trên quỹ đạo quanh Mặt Trời.[1] Trong mỗi chu kỳ này, nó thay đổi từ "Sao Hôm", hiện lên sao khi Mặt Trời lặn, thành "Sao Mai", nhìn thấy được trước khi Mặt Trời mọc. Trong khi Sao Thủy, một hành tinh phía trong khác, có góc ly giác cực đại bằng 28° và thường khó quan sát duói ánh sáng lúc chạng vạng, Sao Kim rất dễ nhận ra khi nó ở thời điểm sáng nhất. Góc ly giác của nó lớn hơn có nghĩa là nó ở trên bầu trời tối lâu hơn sau khi Mặt Trời lặn. Là một điểm sáng nhất trên bầu trời đêm, đôi khi người ta nhầm lẫn Sao Kim với những "vật thể bay không xác định". Tổng thống Hoa Kỳ Jimmy Carter đã từng nói ông đã trông thấy một UFO năm 1969, mà sau khi phân tích thì khả năng đó là hình ảnh của Kim Tinh. Và vô số những báo cáo kỳ lạ khác liên quan đến Sao Kim.[83]

Khi Sao Kim chuyển động trên quỹ đạo, hình ảnh của nó hiện lên qua kính thiên văn với những pha khác nhau giống nhưpha Mặt Trăng: Trong pha Sao Kim, hành tinh có hình ảnh tròn "đầy" nhỏ khi Mặt Trời ở giữa tương đối Sao Kim và Trái Đất. Nó có pha phần tư lớn dần khi tiến đến vị trí có góc ly giác lớn nhất tính từ Mặt Trời, và chính là vị trí nó có độ sáng lớn nhất, và hiện lên với hình lưỡi liềm mỏng dần khi quan sát qua thấu kính khi nó tiến về phía gần Trái Đất. Hình ảnh của Sao Kim lớn nhất khi nó ở "pha mới", lúc hành tinh ở giữa Trái Đất và Mặt Trời. Khí quyển của nó có thể nhìn qua kính thiên văn và chúng ta sẽ nhận thấy một vành sáng phản xạ của ánh sáng Mặt Trời trên khí quyển hành tinh.[9]

Sự đi qua của Sao Kim

Sao Kim đi qua đĩa Mặt Trời năm 2004.

Mặt phẳng quỹ đạo Sao Kim hơi nghiêng so với của Trái Đất; do vậy khi hành tinh vượt qua giữa Trái Đất và Mặt Trời, nó thường không đi qua đĩa Mặt Trời. Hiện tượng Sao Kim đi qua Mặt Trời xuất hiện khi thời điểm giao hội trong của hành t.inh tr.ùng với vị trí có mặt của nó trên mặt phẳng quỹ đạo của Trái Đất. Sự đi qua này có chu kỳ 243 năm trong đó có cặp hiện tượng đi qua cách nhau 8 năm, mỗi cặp hiện tượng này cách nhau khoảng 105,5 năm hoặc 121,5 năm—hiện tượng Sao Kim đi qua Mặt Trời do nhà thiên văn học Jeremiah Horrocks tính toán và phát hiện đầu tiên vào năm 1639.[84]

Cặp hiện tượng đi qua gần đây nhất là vào ngày 8 tháng 6, 20045–6 tháng 6, 2012. Sự kiện này đã được cộng đồng những người yêu thích thiên văn nghiệp dư cũng như các nhà thiên văn đón nhận và tận dụng cơ hội để quan sát.[85]

Cặp trước đó xảy ra vào tháng 12 năm 1874 và tháng 12 1882; trong khi cặp hiện tượng tiếp theo sẽ diễn ra vào tháng 12 năm 2117 và tháng 12 năm 2125.[86] Về mặt lịch sử, sự kiện Sao Kim đi qua Mặt Trời là một hiện tượng hiếm có cho phép các nhà thiên văn học xác định được trực tiếp giá trị của 1 đơn vị thiên văn, và từ đó xác định được kích cỡ của Hệ Mặt Trời như được chỉ ra bởi Horrocks năm 1639.[87] Chuyến thám hiểm của thuyền trưởng Cook đến bờ đông của Australia sau khi ông đã đến Tahiti năm 1768 nhằm quan sát hiện tượng này.[88][89]

Ánh sáng xám
Có một bí ẩn từ lâu trong khi quan sát Sao Kim đó là hiện tượng ánh sáng xám - một hình ảnh được chiếu sáng yếu của mặt tối hành tinh, khi hành tinh ở pha lưỡi liềm. Lần đầu tiên hiện tượng này được phát hiện đó là vào năm 1643, nhưng sự tồn tại của ánh sáng xanh vẫn chưa được xác nhận một cách tin cậy. Những người quan sát nghĩ rằng hiện tượng này là do những hoạt động có sự tham gia của luồng điện tích trong khí quyển Sao Kim, hoặc nó cũng có thể là một ảo ảnh, một hiệu ứng liên quan đến thị giác khi người quan sát nhìn vào hình ảnh lưỡi liềm của nó.[90]

Nghiên cứu
Nghiên cứu ban đầu

"Hiệu ứng giọt đen" được ghi lại trong lần Sao Kim đi qua Mặt Trời năm 1769.
Người cổ đại đã biết đến Sao Kim với những tên gọi "sao hôm" và "sao mai", phản ánh những hiểu biết ban đầu của họ về sự xuất hiện của hai thiên thể khác nhau. Bản quan sát Sao Kim của Ammisaduqa]], từ năm 1581 trước Công nguyên, cho thấy người Babylon đã hiểu được hai vật thể tách biệt này thực ra là một, và họ coi nó là "nữ hoàng ánh sáng của bầu trời" khi ghi trên bảng, và cho phép hỗ trợ cũng như tiên đoán trong các quan sát sau.[91] Người Hy Lạp cũng từng nghĩ đây là hai thiên thể riêng biệt, sao Phosphorus và sao Hesperus, cho đến khi Pythagoras mới phát hiện ra điều này ở thế kỷ thứ 6 trước Công nguyên. Người La Mã coi sao hôm là Lucifer, hay "Người mang lại ánh sáng", và sao hôm là Vesper.[92]

Hiện tượng Sao Kim đi qua Mặt Trời lần đầu tiên được quan sát và ghi chép lại bởi nhà thiên văn Jeremiah Horrocks ngày 4 tháng 12 năm 1639 (24 tháng 11 theo lịch Julius thời đó), cùng với người bạn của ông là William Crabtree, mỗi người quan sát tại nhà riêng của họ.[93]


Galileo là người đầu tiên nhận ra các pha của Sao Kim và càng củng cố niềm tin của ông là các hành tinh quay quanh Mặt Trời chứ không phải Trái Đất.
Khi nhà bác học Galileo Galilei lần đầu tiên hướng ống kính quan sát Sao Kim vào năm 1610, ông đã nhận ra hành tinh này cũng có các pha giống như pha Mặt Trăng, hình ảnh của nó biến đổi từ gần tròn cho đến hình lưỡi liềm và ngược lại. Khi Sao Kim ở cách xa Mặt Trời nhất, nó hiện lên là hình nửa hình tròn, và khi nó tiến gần đến Mặt Trời trên nền bầu trời, nó có hình lưỡi liềm và tròn. Điều này chỉ có thể xảy ra khi Sao Kim quay quanh Mặt Trời trên quỹ đạo, và là một trong những quan sát đầu tiên mâu thuẫn với mô hình địa tâm của Ptolemy.[94]

Nhà khoa học Mikhail Lomonosov là người đầu tiên phát hiện Sao Kim có khí quyểnvào năm 1761.[95][96] Cho tới năm 1790, khí quyển của hành tinh mới được quan sát rõ ràng bởi nhà thiên văn Johann Schröter. Schröter phát hiện thấy khi hành tinh ở pha lưỡi liềm, hai đỉnh nhọn của cung lưỡi liềm kéo dài hơn 180°. Ông đoán chính xác điều này là do ánh sáng Mặt Trời tán xạ từ khí quyển dày đặc. Sau đó, nhà thiên văn Chester Smith Lyman quan sát thấy một vòng sáng đầy đủ trong pha tối Sao Kim khi nó ở vị trí giao hội trong, cung cấp thêm bằng chứng nữa cho khẳng định trên Sao Kim có khí quyển.[97] Do khí quyển dày đặc nên nhiều nhà thiên văn đã nỗ lực để xác định chu kỳ tự quay của hành tinh, như Giovanni Cassini và Schröter đã tính sai chu kỳ tự quay của nó bằng khoảng 24 giờ khi hai ông dựa trên những đặc điểm sáng từ hình ảnh quan sát hành tinh.[98]

Nghiên cứu thời hiện đại dưới mặt đất

Ảnh Sao Kim chụp từ kính thiên văn 250 mm.
Ít có thêm khám phá về Sao Kim cho đến tận thế kỷ 20. Do khí quyển quá dày nên nó chỉ hiện ra là một cái đĩa tròn hoặc hình lưỡi liềm, và người ta vẫn không biết hình ảnh bề mặt của nó như thế nào. Chỉ đến khi các thiết bị như phổ kế, radar và quan sát qua tia tử ngoại thì các nhà thiên văn mới phát hiện thêm nhiều đặc điểm của hành tinh. Quan sát bằng UV đầu tiên được thực hiện trong thập niên 1920, khi Frank Ross phát hiện thấy sử dụng tia UV các hình ảnh cho nhiều chi tiết hơn khi quan sát bằng ánh sáng khả kiến và hồng ngoại. Ông nêu ra là điều này do khí quyển của hành tinh rất dày đặc, tầng thấp khí quyển màu vàng với những đámmây ti ở trên cao.[99]

Quan sát qua phổ kế từ thập niên 1900 đưa ra manh mối đầu tiên về sự tự quay của hành tinh. Vesto Slipher cố gắng đo dịch chuyển Doppler từ ánh sáng phản xạ từ Sao Kim, nhưng ông đã không thể tìm ra hành tinh tự quay. Do vậy ông đoán rằng hành tinh phải có tốc độ tự quay rất chậm so với trước đây người ta từng nghĩ.[100] Những nghiên cứu về sau trong những năm 1950 chỉ ra Sao Kim tự quay nghịch hành. Những quan sát bằng ra đa thực hiện đầu tiên trong những năm 1960 cho những kết quả đầu tiên về tốc độ tự quay của hành tinh và đã rất gần với giá trị chính xác ngày nay.[101]

Kết quả từ quan trắc ra đa những năm 1970 lần đầu tiên còn cho những hình ảnh chi tiết về bề mặt Sao Kim. Những xung của sóng vô tuyến được phát lên hành tinh và đo tín hiệu phản hồi lại thu tại kính thiên văn vô tuyến đường kính 300 m ởđài quan sát Arecibo, và các nhà khoa học nhận thấy tiếng vọng ra đa thể hiện khá mạnh ở hai vùng, mà họ đặt là các vùng Alpha và Beta. Sau các phân tích thì những vùng sáng trên ảnh ra đa là các rặng núi, mà họ đặt tên là ngọn Maxwell Montes.[102] Ba đặc điểm duy nhất này trên Sao Kim được đặt tên không thuộc về phái nữ.[103]

Thám hiểm
Những nỗ lực ban đầu

Mariner 2, phóng vào năm 1962
Phi vụ tàu không gian robot đầu tiên gửi đến Sao Kim và cũng là hành tinh đầu tiên một tàu của con người đến thăm dò, bắt đầu vào ngày 12 tháng 2 năm 1961, với tàu Venera 1 được phóng lên. Con tàu phóng lên thành công trong chương trình Venera theo quỹ đạo trực tiếp nhưng đã mất liên lạc với mặt đất bày ngày sau khi phóng, khi con tàu ở cách Trái Đất 2 triệu km. Các nhà khoa học Nga dự tính nó đi qua Sao Kim ở khoảng cách 100.000 km vào trung tuần tháng 5, 1961.[104]

Chương trình thám hiểm Sao Kim của Hoa Kỳ cũng khởi đầu bằng thất bại của tàu Mariner một trong lúc phóng. Tàu Mariner 2 thành công hơn khi nó tồn tại được 109 ngày sau khi phóng lên quỹ đạo và ngày 14 tháng 12 năm 1962 nó trở thành phi vụ thám hiểm hành tinh đầu tiên thành công, khi tiếp cận đến Sao Kim ở khoảng cách 34.833 km. Các thiết bị đo bức xạ vi bahồng ngoại cho thấy trong khí các đám mây trên cao của khí quyển Sao Kim rất lạnh thì nhiệt độ bề mặt dưới hành tinh rất nóng ít nhất 425 °C, xác nhận những kết quả quan sát trước đó trên Trái Đất[105] và cuối cùng kết thúc mọi hi vọng của nhiều người về tồn tại một sự sống trên hành tinh này. Tàu Mariner 2 cũng gửi về các số liệu khối lượng hành tinh và đơn vị hành tinh, nhưng nó đã không phát hiện thấy bất kỳ sự tồn tại nào của từ trường hành tinh hay vành đai bức xạ.[106]

Rơi vào khí quyển

Tàu Pioneer Venus Multiprobe
Tàu Venera 3 của Liên Xô đổ bộ xuống Sao Kim ngày 1 tháng 3, 1966. Nó là thiết bị nhân tạo đầu tiên đi vào khí quyển và va chạm xuống bề mặt hành tinh khác, mặc dù hệ thống liên lạc của nó đã bị hỏng và người ta không nhận được một dữ liệu gì của nó gửi về.[107] Ngày 18 tháng 10 năm 1967, Venera 4 đã đi vào khí quyển thành công và thực hiện một số thí nghiệm khoa học. Venera 4 cho thấy tại vị trí nó đi vào khí quyển nhiệt độ đo được cao hơn giá trị mà tàu Mariner 2 trước đo gửi về và Venera 4 đo được 500 °C, bầu khí quyển hành tinh chứa 90 đến 95% cacbon điôxít. Khí quyển Sao Kim dày hơn đáng kể so với giá trị mà những kĩ sư thiết kế Venera 4 sử dụng để tính toán, và nó rơi xuống chậm hơn với dù bung hay lượng điện trong pin tích trữ hết sớm hơn trước khi nó có thể rơi chạm mặt đất. Sau khi gửi dữ liệu trong 93 phút hành trình, giá trị áp suất cuối cùng mà Venera 4 đo được bằng 18 bar tại độ cao 24,96 km so với bề mặt.[107]

Đúng 1 ngày sau, 19 tháng 10 năm 1967, Mariner 5 bay qua hành tinh ở khoảng cách 4000 km bên trên các đám mây. Tàu Mariner 5 ban được chế tạo để phóng lênSao Hỏa-cùng Mariner 4, nhưng khi phi vụ này thành công, những người đứng đầu NASA quyết định sử dụng nó nhằm thám hiểm Sao Kim. Với những thiết bị nhạy hơn tàu Mariner 2, dặc biệt là thiết bị khảo sát sự che khuất tín hiệu vô tuyến, đã gửi dữ liệu về thành phần, áp suất và mật độ khí quyển Sao Kim.[108] Dữ liệu từ sự hợp tác giữa Venera 4 – Mariner 5 đã được phân tích bởi một đội các nhà khoa học Liên Xô và Hoa Kỳ trong những năm sau đó,[109] và thể hiện sự hợp tác nghiên cứu khoa học đa quốc gia trong những năm đầu của kỷ nguyên vũ trụ.[110]

Thu được kinh nghiệm từ tàu Venera 4, Liên Xô đã phóng hai tàu giống nhau Venera 5 và Venera 6 cách nhau năm ngày trong tháng 1 năm 1969; chúng đi vào khí quyển Kim Tinh các ngày 16 và 17 tháng 5 trong cùng năm. Lớp bảo vệ tàu và thiết bị khoa học đã được gia cường để tăng khả năng chịu áp suất lên tới 25 bar và hai tàu được trang bị dù nhỏ hơn cho phép chúng rơi nhanh hơn. Do ngày nay chúng ta ước tính khí quyển Sao Kim có áp suất bề mặt từ 75 đến 100 bar, cho lên hai tàu đã không còn hoạt động khi tiếp đất. Sau khi gửi về 50 phút dữ liệu khí quyển, cả hai đã bị bẹp nát ở độ cao xấp xỉ 20 km trước khi kịp chạm đất ở phía mặt tối của Sao Kim.[107]

Nghiên cứu bề mặt và khí quyển

Tàu quỹ đạo Pioneer Venus Orbiter.
Các kĩ sư Liên Xô tiếp tục tham vọng đổ bộ thành công lên bề mặt với Venera 7 và thu được dữ liệu từ bề mặt. Con tàu được lắp ráp với mô đun kiên cố có khả năng chịu được áp suất tới 180 bar. Mô đun này được làm lạnh trước khi con tàu Venera 7 đi vào khí quyển và nó được trang bị dù cánh buồm cho phép thời gian rơi dự kiến của tàu là 35 phút. Trong khi đi vào khí quyển ngày 15 tháng 12 năm 1970, các kĩ sư tin rằng dù này đã bị rách một phần, và con tàu đã va chạm mạnh xuống bề mặt, tuy không bị phá hủy hoàn toàn. Nó vẫn gửi được tín hiệu yếu về Trái Đất và tồn tại trong khoảng 23 phút, và đây là lần đầu tiên tín hiệu vô tuyến nhận được từ bề mặt một hành tinh khác.[107]

Chương trình Venera tiếp tục với phi vụ Venera 8 khi nó gửi được dữ liệu từ thời điểm chạm đất trong khoảng 50 phút, sau khi đi vào khí quyển ngày 22 tháng 7 năm 1972. Venera 9, đi vào khí quyển ngày 22 tháng 10 năm 1975, và ba ngày sau 25 tháng 10 tàu Venera 10, gửi những hình ảnh đầu tiên về quang cảnh Sao Kim. Hai vị trí đổ bộ có địa hình khác nhau xung quanh hai tàu: Venera 9 rơi xuống một sườn dốc 20 độ với những tảng đá đường kính 30–40 cm nằm rải rác xung quanh; Venera 10 rơi trên phiến đá phẳng kiểu bazan bao quanh bởi đất đá bịphong hóa.[111]

Trong thời gian này, Hoa Kỳ đã gửi tàu Mariner 10 có quỹ đạo bay qua Sao Kim nhằm lợi dụng hỗ trợ hấp dẫn để đến Sao Thủy. Ngày 5 tháng 2 năm 1974, Mariner 10 đi qua hành tinh ở khoảng cách 5790 km, và gửi về trung tâm điều khiển hơn 4.000 bức ảnh. Các bức ảnh với chất lượng tốt nhất từ trước đó, cho thấy hành tinh hiện lên không có gì nổi bật dưới ánh sáng khả kiến, nhưng qua bước sóng tử ngoại các nhà khoa học có thể nhận ra các đám mây mà chưa từng được quan sát từ các đài quan trắc trên Trái Đất.[112]

Dự án Pioneer Venus bao gồm hai phi vụ riêng.[113] Tàu quỹ đạo Pioneer Venus Orbiter đi vào quỹ đạo elip quanh Sao Kim ngày 4 tháng 12 năm 1978, và tồn tại ở đó trong 13 năm, nó nghiên cứu khí quyển và chụp ảnh bề mặt bằng sóng ra đa. Tàu Pioneer Venus Multiprobe thả ra tổng cộng 4 thiết bị thăm dò đi xuống khí quyển Sao Kim ngày 9 tháng 12 năm 1978, và chúng đã gửi dữ liệu về thành phần, sức gió và thông lượng nhiệt trong khí quyển hành tinh.[114]

Có thêm bốn phi vụ đổ bộ nữa diễn ra trong bốn năm tiếp theo, mà các tàu Venera 11 và Venera 12 phát hiện ra những cơn bão điện tích trong khí quyển;[115] và Venera 13 và Venera 14, đổ bộ cách nhau bốn ngày 1 và 5 tháng 3 năm 1982, gửi về những bức ảnh màu đầu tiên về bề mặt hành tinh. Cả bốn phi vụ đều sử dụng dù bung để h.ãm tàu rơi trong khí quyển, nhưng sau đó thả chúng ra tại độ cao 50 km, nơi khí quyển có mật độ dày đặc hơn và cho phép các tàu chạm đất nhẹ nhàng dựa vào ma sát với không khí mà không cần sự hỗ trợ của dù. Cả Venera 13 và 14 đều thực hiện nhiệm vụ phân tích mẫu đất bằng phổ kế huỳnh quang tia X gắn trên tàu, cũng như đo tính nén của đất nơi chúng đổ bộ bằng một thiết bị va chạm.[115] Venera 14 bị hỏng lắp chụp camera và thiết bị của nó không thể tiếp xúc với đất được.[115] Chương trình Venera kết thúc vào tháng 10 năm 1983, khi Venera 15 và Venera 16 đi vào quỹ đạo quanh Sao Kim nhằm vẽ bản đồ địa hình hành tinh thông qua phương pháp tổng hợp tín hiệu ra đa.[116]

Năm 1985, Liên Xô đã kết hợp nhiệm vụ thám hiểm Sao Kim với thăm dò sao chổi Halley, sao chổi đi vào vùng bên trong Hệ Mặt Trời năm đó. Trên đường đến sao chổi Halley, ngày 11 và 15 tháng 6 năm 1985, hai tàu không gian của chương trình Vega mỗi tàu đã thả một thiết bị thăm dò từng thiết kế trong chương trình Venera và giải phóng một robot bay trong khí quyển nhờ khí cầu. Robot khí cầu này hoạt động trên độ cao khoảng 53 km, nơi áp suất và nhiệt độ tương đương trên bề mặt Trái Đất. Hai robot đã hoạt động trong khoảng 46 giờ, và khám phá ra khí quyển Sao Kim hỗn loạn hơn rất nhiều so với trước đó từng nghĩ, với những luồng gió mạnh và những ô đối lưu khí quyển mạnh.[117][118]

Vẽ bản đồ bằng ra đa

Tàu Magellan vẽ bản đồ địa hình bề mặt Sao Kim bằng tín hiệu vô tuyến (màu giả)
Những nghiên cứu bằng tín hiệu ra đa từ Trái Đất đã cung cấp những hình ảnh cơ bản về bề mặt hành tinh này. Các tàu Pioneer Venus và Venera cũng đã gửi về những bức ảnh có độ phân giải cao hơn.

Tàu không gian Magellan của Hoa Kỳ phóng lên ngày 4 tháng 5 năm 1989, với mục đích thu được hình ảnh bề mặt Sao Kim bằng phương pháp ảnh ra đa.[27] Con tàu đã gửi những bức ảnh phân giải cao trong suốt 4,5 năm hoạt động với lượng dữ liệu gửi về vượt qua tất cả các phi vụ thám hiểm hành tinh này trước đó. Magellan chụp được hơn 98% diện tích bề mặt bằng ra đa,[119] và vẽ ra 95% bản đồ phân bố khối lượng trong hành tinh bằng cách đo tác dụng của trường hấp dẫn lên con tàu. Năm 1994, thời điểm kết thúc của phi vụ, các kĩ sư đã gửi Magellan rơi vào khí quyển Sao Kim nhằm đánh giá mật độ khí quyển hành tinh.[120] Sao Kim cũng đã được chụp ảnh từ các tàu GalileoCassini trong thời gian chúng bay qua hành tinh để đến lần lượt Sao MộcSao Thổ, nhưng tàu Magellan là phi vụ cuối cùng của thể kỷ nhằm để nghiên cứu riêng Sao Kim.[121][122]

Những phi vụ hiện tại và tương lai

Tàu không gian MESSENGER của NASA trên đường đến Sao Thủy đã hai lần thực hiện bay qua Sao Kim vào tháng 10 năm 2006 và tháng 6 năm 2007, nhằm giảm vận tốc trên quỹ đạo để nó có thể bị bắt bởi Sao Thủy khi đi vào quỹ đạo hành tinh này tháng 3 năm 2011. MESSENGER cũng đã thu thập và gửi về một số dữ liệu.[123]

Tàu Venus Express được thiết kế và chế tạo bởi ESA, phóng lên ngày 9 tháng 11 năm 2005 bằng tên lửa Soyuz-Fregat của Nga thông qua công ty sở hữu chung của Nga và ESA là "Starsem", nó đã đi vào quỹ đạo cực quanh Sao Kim ngày 11 tháng 4, 2006.[124] Nhiệm vụ của con tàu là nghiên cứu chi tiết khí quyển cũng như các đám mây, bao gồm lập ra bản đồ môi trường plasma bao quanh và các đặc điểm bề mặt hành tinh, đặc biệt là nhiệt độ. Một trong những khám phá của Venus Express hai xoáy khí quyển khổng lồ tồn tại trong khí quyển ở cực nam Sao Kim.[124]


Minh họa robot tự hành do NASA thiết kế.[125]
Cơ quan nghiên cứu và phát triển hàng không vũ trụ Nhật Bản (JAXA) đã thiết kế và chế tạo một tàu quỹ đạo, Akatsuki (tên gọi cũ "Hành tinh-C"), phóng lên ngày 20 tháng 5 năm 2010, nhưng nó đã thất bại khi không đi vào quỹ đạo Sao Kim tháng 12 năm 2010. Hy vọng vẫn còn khi các kĩ sư đặt con tàu vào chế độ đóng băng và họ cố gắng thử đưa tàu vào quỹ đạo một lần nữa vào năm 2016. Nhiệm vụ nghiên cứu của nó bao gồm chụp ảnh bề mặt bằng một camera hồng ngoại và phát hiện ra tia sét trong khí quyển, cũng như phát hiện ra những núi lửa còn khả năng hoạt động.[126]

Cơ quan ESA đang triển khai kế hoạch phóng một tàu quỹ đạo lên Sao Thủy năm 2014, tàu BepiColombo, và nó sẽ thực hiện hai lần bay qua Sao Kim trước khi đi vào quỹ đạo Sao Thủy năm 2020.[127]

Trong Chương trình New Frontiers, NASA đề xuất một phi vụ đổ bộ "Venus In-Situ Explorer" nhằm nghiên cứu điều kiện bề mặt và khảo sát khoáng chất của regolith. Robot sẽ được trang bị một máy khoan lấy mẫu để nghiên cứu đất và những mẫu đá chưa bị phong hóa dưới điều kiện khắc nghiệt tại bề mặt hành tinh. Một phi vụ khác nhằm nghiên cứu bề mặt và khí quyển, "Surface and Atmosphere Geochemical Explorer" (SAGE), là một ứng cử viên trong New Frontiers năm 2009,[128]nhưng nó đã không được lựa chọn để triển khai.

Vệ tinh Venera-D (tiếng Nga: Венера-Д) do cơ quan hàng không không gian Nga thiết kế có thể được phóng lên trong năm 2016, với nhiệm vụ nghiên cứu môi trường bao quanh Sao Kim cũng như thả một thiết bị đổ bộ, dựa trên thiết kế cũ của chương trình Venera, với mục tiêu tồn tại lâu trên bề mặt hành tinh. Những đề xuất nghiên cứu thăm dò Sao Kim khác bao gồm các robot tự hành, khí cầu, và máy bay trong khí quyển.[129]

Ý tưởng về chuyến bay có người lái

Một phi vụ có người lái đến Sao Kim, sử dụng các con tàu và tên lửa có từ chương trình Apollo, đã được đề xuất cuối những năm 1960.[130] Kế hoạch của chương trình là phóng tên lửa đưa người lên vào tháng 10 hoặc tháng 11 của năm 1973, và sử dụng tên lửa Saturn V để đưa ba phi hành gia đến Sao Kim trong khoảng thời gian 1 năm. Con tàu sẽ bay qua bề mặt Sao Kim ở khoảng cách 5.000 kilômét trong khoảng bốn tháng trước khi quay trở lại Trái Đất. Tuy nhiên ý tưởng đã bị hủy bỏ vì có quá nhiều khó khăn về mặt kỹ thuật và tài chính.[130]

Thời gian các phi vụ thám hiểm

Dưới đây là danh sách các phi vụ tàu không gian tới thám hiểm trực tiếp hoặc là thực hiện bay qua Sao Kim.[131] Sao Kim cũng được chụp bởi Hubble, và những kính thiên văn khác cũng đã thu thập dữ liệu về hành tinh qua các dải bước sóng khác nhau.

Bảng các phi vụ thám hiểm Sao Kim

Trong văn hóa

Tàu Clementine chụp hình Mặt Trăng che khuất Mặt Trời với Sao Kim ở bên trên.
Theo hệ thống đặt tên hành tinh của IAU, Sao Kim là hành tinh duy nhất trong Hệ Mặt Trời đặt tên theo hình ảnh của phái nữ.[132] Ba hành tinh lùn;– Ceres, ErisHaumea – cùng với những tiểu hành tinh đầu tiên được phát hiện ra[133] và một số vệ tinh (như các vệ tinh Galilei) cũng mang tên giống cái/phái nữ. Trái Đất và Mặt Trăng cũng có tên phái nữ trong nhiều ngôn ngữ—Gaia/Terra, Selene/Luna— nhưng tên gọi của các vị thần nữ trong thần thoại dùng để đặc cho một thiên thể, chứ không phải họ được đặt tên theo thiên thể đó.[134]

Biểu tượng Sao Kim

Ký hiệu thiên văn học cho Sao Kim giống như ký hiệu sử dụng trong sinh học cho giống cái: một hình tròn với chữ thập ở bên dưới.[135] Biểu tượng của Sao Kim cũng thể hiện sự yếu đuối, và các nhà giả kim phương Tây trung đại còn dùng ký hiệu này cho kim loại đồng.[135] Đồng được đánh bóng cũng được sử dụng làm gương soi ở thời cổ đại, và biểu tượng Sao Kim đôi khi còn được hiểu là chiếc gương soi của các vị thần.[135]

Trong văn hóa

Là một trong những thiên thể sáng nhất trên bầu trời, Sao Kim đã được con người biết đến từ lâu và nó có vị trí vững chắc trong tư tưởng văn hóa xuyên suốt lịch sử loài người. Nó được miêu tả trong các văn bản của người Babylon như Bảng Sao Kim của Ammisaduqa, văn bản này liên quan đến những quan sát về ngôi sao này có thể vào thời điểm năm 1600 TCN.[136]Những người Babylon đặt tên cho nó là Ishtar (thần Inanna của người Sumer), là hiện thân của phái nữ, và nữ thần tình yêu.[137] Bà còn là nữ thần chiến tranh, đại diện cho vị thần trông coi sinh và tử.[138]

Người Ai Cập cổ đại tin rằng có hai thiên thể khác nhau và gọi nó là Tioumoutiri khi nó xuất hiện vào buổi sáng (trong tiếng Việt là sao Mai) và khi xuất hiện vào buổi tối gọi là Ouaiti (sao Hôm).[139] Tương tự người Hy Lạp cũng tin rằng Sao Kim cũng gọi là sao Mai Φωσφόρος, Phosphoros (Latin hóa Phosphorus), "Bringer of Light" Ἐωσφόρος, Eosphoros (Latin hóaEosphorus), "Bringer of Dawn". Sao vào buổi tối được gọi là Hesperos (Latin hóa Hesperus) (Ἓσπερος, "sao hôm"). NgườiHy Lạp cổ đại đã nhận ra rằng, hai thiên thể này thực chất là một hành tinh,[140][141] được đặt theo tên nữ thần tình yêu của họ là Aphrodite (Αφροδίτη) (thần Astarte của Phoenicia),[142] tên hành tinh được giữ lại trong tiếng Hy Lạp hiện đại.[143]Người La Mã cổ đại có xuất phát tôn giáo phần lớn từ Hy Lạp đã đặt tên cho hành tinh theo Venus, một vị thần tình yêu của họ.[144] Gaius Plinius Secundus (Natural History, ii,37) đã xác định Sao Thủy với Isis.[145]

Xâm lược thuộc địa

Do những điều kiện vật lý khắc nghiệt, việc xâm lược lên bề mặt Sao Kim là không thể đối với công nghệ hiện nay. Tuy nhiên, ở độ cao xấp xỉ 50 kilômét áp suất khí quyển và nhiệt độ tại đó gần bằng so với tại bề mặt Trái Đất với ôxy và nitơ được thay bằng CO2. Do vậy có người đề xuất xây dựng "những thành phố nổi" trên khí quyển Sao Kim.[146] Những khí cầu Aerostat có thể được sử dụng nhằm thám hiểm và cuối cùng dừng để nâng đỡ các thành phố nổi này.[146] Những khó khăn về mặt kỹ thuật đó là có quá nhiều axít sunfuric hay thiếu ôxy tại những độ cao này. Ngoài ra còn có sự nhiễu động mạnh của bầu khí quyển cũng như tác động của tia vũ trụ khi hành tinh không có từ quyển bao quanh.[146]
 
Mặt Trờingôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,86% khối lượng của Hệ Mặt Trời.[6] Trái Đất và các thiên thể khác như các hành tinh, tiểu hành tinh, thiên thạch, sao chổi, và bụi quay quanh Mặt Trời. Khoảng cách trung bình giữa Mặt Trời và Trái Đất xấp xỉ 149,6 triệu kilômét (1 Đơn vị thiên văn AU) nên ánh sáng Mặt Trời cần 8 phút 19 giây mới đến được Trái Đất. Trong một năm, khoảng cách này thay đổi từ 147,1 triệu kilômét (0,9833 AU) ở điểm cận nhật (khoảng ngày 3 tháng 1), tới xa nhất là 152,1 triệu kilômét (1,017 AU) ở điểm viễn nhật (khoảng ngày 4 tháng 7).[7] Năng lượng Mặt Trời ở dạng ánh sáng hỗ trợ cho hầu hết sự sống trên Trái Đất thông qua quá trình quang hợp,[8] và điều khiển khí hậu cũng như thời tiết trên Trái Đất. Thành phần của Mặt Trời gồm hydro (khoảng 74% khối lượng, hay 92% thể tích), heli (khoảng 24% khối lượng, 7% thể tích), và một lượng nhỏ các nguyên tố khác, gồm sắt, nickel, oxy, silic, lưu huỳnh, magiê, carbon, neon, canxi, và crom.[9] Mặt Trời có hạng quang phổ G2V. G2 có nghĩa nó có nhiệt độ bề mặt xấp xỉ 5.778 K (5.505 °C) khiến nó có màu trắng, và thường có màu vàng khi nhìn từ bề mặt Trái Đất bởi sự tán xạ khí quyển. Chính sự tán xạ này của ánh sáng ở giới hạn cuối màu xanh của quang phổ khiến bầu trời có màu xanh.[10] Quang phổ Mặt Trời có chứa các vạch ion hoá và kim loại trung tính cũng như các đường hydro rất yếu. V (số 5 La Mã) trong lớp quang phổ thể hiện rằng Mặt Trời, như hầu hết các ngôi sao khác, là một ngôi sao thuộc dãy chính. Điều này có nghĩa nó tạo ra năng lượng bằng tổng hợp hạt nhân của hạt nhân hydro thành heli. Có hơn 100 triệu ngôi sao lớp G2 trong Ngân Hà của chúng ta. Từng bị coi là một ngôi sao nhỏ và khá tầm thường nhưng thực tế theo hiểu biết hiện tại, Mặt Trời sáng hơn 85% các ngôi sao trong Ngân Hà với đa số là các sao lùn đỏ.[11][12]

Quầng nóng của Mặt Trời liên tục mở rộng trong không gian và tạo ra gió Mặt Trời là các dòng hạt có vận tốc gấp 5 lần âm thanh - mở rộng nhật mãn (Heliopause) tới khoảng cách xấp xỉ 100 AU. Bong bóng trong môi trường liên sao được hình thành bởi gió mặt trời, nhật quyển (heliosphere) là cấu trúc liên tục lớn nhất trong Hệ Mặt Trời.[13][14]

Mặt Trời hiện đang đi xuyên qua đám mây Liên sao Địa phương (Local Interstellar Cloud) trong vùng Bóng Địa phương (Local Bubble) mật độ thấp của khí khuếch tán nhiệt độ cao, ở vành trong của Nhánh Orion của Ngân Hà, giữa nhánh Perseusnhánh Sagittarius của ngân hà. Trong 50 hệ sao gần nhất bên trong 17 năm ánh sáng từ Trái Đất, Mặt Trời xếp hạng 4[15] về khối lượng như một ngôi sao cấp bốn (M = +4,83),[1][16] dù có một số giá trị cấp hơi khác biệt đã được đưa ra, ví dụ 4,85[17] và 4,81.[18] Mặt Trời quay quanh trung tâm của Ngân Hà ở khoảng cách xấp xỉ 24.000–26.000 năm ánh sáng từ trung tâm Ngân Hà, nói chung di chuyển theo hướng chùm sao Cygnus và hoàn thành một vòng trong khoảng 225–250 triệu năm (một năm ngân hà). Tốc độ trên quỹ đạo của nó được cho khoảng 250 ± 20, km/s nhưng một ước tính mới đưa ra con số 251 km/s.[19][20] Bởi Ngân Hà của chúng ta đang di chuyển so với Màn bức xạ vi sóng vũ trụ (CMB) theo hướng chòm sao Hydra với tốc độ 550 km/s, nên tốc độ chuyển động của nó so với CMB là khoảng 370 km/s theo hướng chòm sao Crater hay Leo.[21]



Mục lục
220px--Moon_transit_of_sun_large.ogv.jpg
Mặt Trăng đi qua Mặt Trời 2/2007,
được chụp bằng camera tử ngoại

Mô hình cấu trúc Mặt Trời:
1. Lõi
2. Vùng bức xạ
3. Vùng đối lưu
4. Quang quyển
5. Sắc quyển
6. Vành nhật hoa (Quầng)
7. Vết đen Mặt Trời
8. Hạt quang quyển (Đốm)
9. Vòng plasma
Mặt Trời là một ngôi sao thuộc dãy chính màu vàng chiếm khoảng 99% tổng khối lượng Hệ Mặt Trời. Nó là một hình cầu gần hoàn hảo, chỉ hơi dẹt khoảng chín phần triệu,[22] có nghĩa đường kính cực của nó khác biệt so với đường kính xích đạo chỉ 10 km (6 dặm). Bởi Mặt Trời tồn tại ở dạng trạng thái plasma và không rắn chắc do đó tốc độ quay (vận tốc góc) tại xích đạo nhanh hơn ở hai cực. Điều này được gọi là chuyển động không đồng tốc. Chu kỳ của chuyển động thực này xấp xỉ 25,6 ngày ở xích đạo và 33,5 ngày ở cực. Tuy nhiên, vì điểm quan sát thuận lợi luôn thay đổi khi Trái Đất quay quanh Mặt Trời nên chuyển động biểu kiến của ngôi sao này tại xích đạo là khoảng 28 ngày.[23] Hiệu ứng ly tâm của chuyển động chậm này yếu hơn 18 triệu lần so với lực hấp dẫn tại xích đạo Mặt Trời. Hiệu ứng thủy triều của các hành tinh thậm chí còn yếu hơn, và không ảnh hưởng lớn tới hình dạng Mặt Trời.[24]

Mặt Trời là một sao nhóm I, nhóm sao có nhiều nguyên tố nặng.[note 1] Sự hình thành Mặt Trời có thể đã được bắt đầu từ các sóng chấn động từ một hay nhiều siêu tân tinh bên cạnh.[25] Lý thuyết này được đưa ra do sự phong phú của nguyên tố nặng trong Hệ Mặt Trời, như vànguranium, nếu những sao có nhiều nguyên tố này thì gọi là Sao nhóm II (ít nguyên tố nặng). Các nguyên tố này theo khả năng có thể nhất đã được tạo ra bởi các phản ứng hạt nhân thu năng lượng trong một quá trình hình thành sao siêu mới, hay bởi sự biến đổi thông qua hấp thụ neutron bên trong một ngôi sao lớn thế hệ hai.[26]

Cấu trúc của Mặt Trời không có ranh giới cụ thể như những hành tinh đá: ở phần phía ngoài của nó, mật độ các khí giảm gần như theo hàm mũ theo khoảng cách từ tâm.[27] Tuy nhiên, cấu trúc bên trong của nó được xác định rõ ràng, như được miêu tả bên dưới. Bán kính Mặt Trời được đo từ tâm tới cạnh ngoài quang quyển. Đây đơn giản là lớp mà bên trên nó các khí quá lạnh hay quá mỏng để bức xạ một lượng ánh sáng đáng kể, và vì thế là bề mặt dễ quan sát nhất bằng mắt thường.[28]

Phía trong Mặt Trời không thể được quan sát trực tiếp và chính Mặt Trời là vật chắn bức xạ điện từ. Tuy nhiên, tương tự như trong địa chất học sử dụng sóng do các trận động đất tạo ra để xác định cấu trúc bên trong của Trái Đất, ngành nhật chấn học (helioseismology) sử dụng các sóng ngoại âm (infrasound) đi xuyên qua phần trong Mặt Trời để đo và hình dung cấu trúc bên trong của ngôi sao.[29] Mô hình máy tính về Mặt Trời cũng sử dụng một công cụ lý thuyết để xác định các lớp bên trong của nó.

Lõi
Bài chi tiết: Lõi Mặt Trời

Mặt cắt ngang một ngôi sao kiểu Mặt Trời (hình vẽ bởi NASA)

Dãy phản ứng p-p giải phóng bức xạ điện từ gamma, neutrino

Mặt cắt cấu trúc của Mặt Trời
Lõi của Mặt Trời được coi là chiếm khoảng 0,2 tới 0,25 bán kính Mặt Trời.[30] Nó có mật độ lên tới 150g/cm³[31][32] (150 lần mật độ nước trên Trái Đất) và có nhiệt độ gần 13.600.000 độ K (so với nhiệt độ bề mặt Mặt Trời khoảng 5.800 K).[33]Những phân tích gần đây của phi vụ SOHO cho thấy tốc độ tự quay của lõi cao hơn vùng bức xạ.[30] Trong hầu hết vòng đời của Mặt Trời, năng lượng được tạo ra bởi phản ứng tổng hợp hạt nhân thông qua một loạt bước được gọi là dãy p–p (proton–proton) (xem hình bên phải) để biến hydro thành heli.[34] Chưa tới 2% heli được tạo ra trong Mặt Trời có từ chu trình CNO (Cacbon-Nitơ-Ôxy). Lõi là vùng duy nhất trong Mặt Trời tạo ra một lượng đáng kể nhiệt thông qua phản ứng tổng hợp: phần còn lại của ngôi sao được đốt nóng bởi năng lượng truyền ra ngoài từ lõi. Tất cả năng lượng được tạo ra từ phản ứng tổng hợp hạt nhân trong lõi phải đi qua nhiều lớp để tới quang quyển trước khi đi vào không gian dưới dạng ánh sáng Mặt Trời hay động năng của các hạt.[35][36]

Tốc độ phản ứng tổng hợp hạt nhân phụ thuộc nhiều vào mật độ và nhiệt độ, vì tốc độ phản ứng tổng hợp hạt nhân diễn ra ở lõi trong trạng thái cân bằng tự điều chỉnh: nếu tốc độ phản ứng hơi lớn hơn sẽ khiến lõi nóng lên nhiều và hơi mở rộng chống lại trọng lượng của các lớp bên ngoài, làm giảm tốc độ phản ứng và điều chỉnh sự nhiễu loạn; và nếu tốc độ hơi nhỏ hơn sẽ khiến lõi lạnh đi và hơi co lại, làm tăng tốc độ phản ứng và một lần nữa lại đưa nó về mức cũ.[37] Các photon (tia gamma) nhiều năng lượng phát ra trong các phản ứng tổng hợp hạt nhân bị hấp thụ trong một plasma mặt trời chỉ vài millimét, và sau đó tái phát xạ theo hướng ngẫu nhiên (và ở mức năng lượng khá thấp)—vì thế cần một thời gian dài các bức xạ mới lên tới bề mặt Mặt Trời. Những ước tính về "thời gian di chuyển của photon" trong khoảng từ 10.000 tới 170.000 năm.[38] Sau chuyến du hành cuối cùng qua lớp đối lưu bên ngoài để tới "bề mặt" trong suốt của quang quyển, các photon thoát ra như ánh sáng khả kiến. Mỗi tia gamma trong lõi Mặt Trời được chuyển thành hàng triệu photon ánh sáng nhìn thấy được trước khi đi vào không gian. Các neutrino cũng được phát sinh từ các phản ứng tổng hợp hạt nhân trong lõi, nhưng không giống như photon, chúng hiếm khi tương tác với vật chất, vì thế hầu như toàn bộ chúng thoát khỏi Mặt Trời ngay lập tức. Trong nhiều năm những đo đạc về số lượng neutrino do Mặt Trời tạo ra cho kết quả thấp hơn các dự đoán lý thuyết khoảng 3 lần. Sự không nhất quán này gần đây đã được giải quyết thông qua sự khám phá các hiệu ứng dao động neutrino. Vì trên thực tế Mặt Trời toả ra số lượng neutrino như các lý thuyết dự đoán, nhưng các máy dò tìm neutrino để lọt mất 2/3 trong số chúng bởi vì các neutrino đã thay đổi hương.[39]

Vùng bức xạ
Trong vùng từ 0,25 tới khoảng 0,7 bán kính Mặt Trời, vật liệu Mặt Trời đủ nóng và đặc đủ để bức xạ nhiệt chuyển được nhiệt độ từ trong lõi ra ngoài.[40] Trong vùng này không có đối lưu nhiệt; tuy các vật liệu lạnh đi khi độ cao tăng lên (từ 7.000.000 °C tới khoảng 2.000.000 °C) làm gradient nhiệt độ này nhỏ hơn giá trị tỷ lệ khoảng đoạn nhiệt (adiabatic lapse rate) và vì thế không thể gây ra sự đối lưu.[32] Nhiệt được truyền bởi sự bức xạion của hydroheli phát ra các photon, nó chỉ di chuyển một khoảng cách ngắn trước khi bị tái hấp thụ bởi các ion khác.[40] Các photon thực tế bật lên rất nhiều lần xuyên qua vật chất đặc này tới mức một photon riêng lẻ mất khoảng một triệu năm để tới được lớp bề mặt, và vì thế, năng lượng chuyển ra ngoài rất chậm.[32] Mật độ giảm sút hàng trăm lần (từ 20 g/cm³ xuống chỉ 0,2 g/cm³) từ đáy lên đỉnh vùng bức xạ.[40]

Giữa vùng bức xạ và vùng đối lưu là một lớp chuyển tiếp được gọi là tachocline. Đây là vùng nơi có sự thay đổi mạnh giữa chuyển động xoay đồng tốc của vùng bức xạ và chuyển động chênh lệch của vùng đối lưu dẫn tới một sự trượt mạnh—một điều kiện nơi các lớp ngang giáp nhau trượt trên nhau.[41] Các dạng chuyển động giống chất lỏng trong vùng đối lưu bên trên, dần biến mất từ đỉnh của lớp này xuống đáy của nó, phù hợp với các đặc điểm yên tĩnh của vùng bức xạ trên đáy. Hiện tại, có giả thuyết cho rằng một nguồn phát điện từ bên trong lớp này tạo ra từ trường của Mặt Trời.[32]

Vùng đối lưu
Trong lớp ngoài của Mặt Trời, từ bề mặt nó xuống xấp xỉ 200.000 km (hay 70% bán kính Mặt Trời), plasma Mặt Trời không đủ đặc hay đủ nóng để chuyển năng lượng nhiệt từ bên trong ra ngoài bằng bức xạ. Vì thế, đối lưu nhiệt diễn ra khi các cột nhiệt mang vật liệu nóng ra bề mặt (quyển sáng) của Mặt Trời. Khi vật liệu lạnh đi ở bề mặt, nó đi xuống dưới đáy vùng đối lưu, để nhận thêm nhiệt từ đỉnh vùng bức xạ. Ở bề mặt nhìn thấy được của Mặt Trời, nhiệt độ đã giảm xuống 5.700 K và mật độ chỉ còn 0,2 g/m³ (khoảng 1/10.000 mật độ không khí ở mực nước biển).[32]

Các cột nhiệt trong vùng đối lưu tạo nên một dấu vết trên Mặt Trời, dưới hình thức hột mặt trời (solar granulation) và siêu hột. Sự hỗn loạn đối lưu của bộ phận phía ngoài này của phần bên trong lòng Mặt Trời hình thành một máy phát điện "tỷ lệ nhỏ" xuất hiện tạo ra từ trường bắc và nam cực trên toàn bộ bề mặt Mặt Trời.[32] Các cột nhiệt của Mặt Trời là các pin Bénard và vì thế thường có hình lăng trụ năm cạnh.[42]

Quang quyển

Nhiệt độ hiệu quả (effective temperature), hay nhiệt độ vật đen của Mặt Trời (5.777 K) là nhiệt độ của một vật thể đen với kích cỡ tương đương phải tạo ra cùng một tổng năng lượng bức xạ.
Bài chi tiết: Quang quyển Mặt Trời
Bề mặt nhìn thấy được của Mặt Trời hay quang quyển là lớp mà ở bên dưới nó, Mặt Trời trở nên mờ đục với ánh sáng nhìn thấy được.[43]Trên quang quyển ánh sáng khả kiến của Mặt Trời tự do đi vào không gian, và năng lượng của nó thoát hoàn toàn khỏi Mặt Trời. Sự thay đổi trong độ mờ đục xảy ra vì sự giảm số lượng ion H−, mà chúng dễ dàng hấp thụ ánh sáng.[43] Trái lại, ánh sáng khả kiến mà chúng ta nhìn thấy được tạo ra khi các electron phản ứng với các nguyên tử hydro để tạo ra các ion H−.[44][45] Quang quyển thực tế dày từ hàng chục tới hàng trăm kilômét, mờ hơn chút ít so với không khí trên Trái Đất. Bởi vì phần phía trên của quang quyển lạnh hơn phần phía dưới, hình ảnh Mặt Trời hiện lên sáng hơn ở trung tâm so với ở cạnh hay rìa của đĩa Mặt Trời, trong một hiện tượng được gọi là rìa tối (limb darkening).[43] Ánh sáng Mặt Trời có phổ gần giống với quang phổ vật đen cho thấy một nhiệt độ khoảng 6.000 K (các vùng sâu có nhiệt độ tới 6.400 K trong khi những vùng nông hơn là 4.400 K[40]), rải rác với các vạch hấp thụ nguyên tử từ các lớp loãng trên quang quyển. Quang quyển có mật độ hạt ~1023/m3 (khoảng 1% mật độ hạt của khí quyển Trái Đất ở mực nước biển).[40]

Những nghiên cứu ban đầu về phổ quang học của quang quyển, một số đường hấp thụ được tìm ra không tương ứng với bất kỳ một nguyên tố hoá học nào từng biết trên Trái Đất khi ấy. Năm 1868, Norman Lockyer đưa ra giả thuyết rằng các đường hấp thụ đó là bởi một nguyên tố mới mà ông gọi là "heli", theo tên thần Mặt Trời Hy Lạp Helios. Mãi 25 năm sau, heli mới được phân lập trên Trái Đất.[46]

Khí quyển
Xem thêm: Vành nhật hoaVòng quầng (Coronal loop)

Trong một sự kiện nhật thực toàn phần, quầng mặt trời có thể quan sát được bằng mắt thường.
Các phần bên trên quang quyển của Mặt Trời được gọi chung là khí quyển Mặt Trời.[43] Chúng có thể được quan sát bằng kính viễn vọng trên toàn bộ dãy phổ điện từ, từ sóng radio qua ánh sáng nhìn thấy được tới tia gamma, và gồm năm vùng chính: nhiệt độ tối thiểu, sắc quyển, vùng chuyển tiếp, vành nhật hoa, và nhật quyển.[43] Nhật quyển, có thể được coi là khí quyển liên tục phía ngoài của Mặt Trời, mở rộng ra bên ngoài vượt quá cả quỹ đạo Sao Diêm Vương tới nhật mãn (heliopause), nơi nó hình thành một biên giới đường chấn động rõ rệt với không gian liên sao. Sắc quyển, vùng chuyển tiếp và vành nhật hoa nóng hơn nhiều so với bề mặt Mặt Trời.[43] Lý do giải thích việc này vẫn chưa rõ ràng, bằng chứng cho thấy rằng các sóng Alfvén có thể có đủ năng lượng để làm nóng vành nhật hoa.[47]

Hàn quyển
Lớp lạnh nhất của Mặt Trời là vùng nhiệt độ tối thiểu nằm cách khoảng 500 km bên trên quanq quyển, với nhiệt độ cỡ 4.100 K.[43] Phần này của Mặt Trời đủ lạnh để tồn tại các phân tử như carbon monoxide và nước, có thể được phát hiện bởi quang phổ hấp thụ của chúng.[48]

Sắc quyển
Bên trên lớp nhiệt độ tối thiểu là một lớp dày khoảng 2.000 km, chủ yếu là quang phổ của các đường hấp thụ và phát xạ.[43] Nó được gọi là sắc quyển bắt nguồn từ từ chroma của Hy Lạp, có nghĩa màu sắc, bởi sắc quyển nhìn thấy được như một ánh sáng có màu ở đầu và cuối của các lần nhật thực toàn phần.[40] Nhiệt độ của sắc quyển tăng dần cùng với độ cao, lên khoảng 20.000 K ở gần đỉnh.[43] Ở phần phía trên của sắc quyển heli bị ion hoá một phần.[49]


Được Kính Viễn vọng Quang học Mặt Trời của Hinode chụp ngày 12 tháng 1 năm 2007, hình ảnh Mặt Trời này cho thấy tình trạng sợi nhỏ của plasma liên kết các vùng phân cực từ tính khác nhau.
Vùng chuyển tiếp[sửa | sửa mã nguồn]
Bên trên sắc quyển có một vùng chuyển tiếp mỏng (khoảng 200 km) trong đó nhiệt độ tăng nhanh từ khoảng 20.000 K ở thượng tầng sắc quyển lên tới nhiệt độ gần một triệu K tại miện.[50] Nhiệt độ gia tăng dễ dàng bởi sự ion hoá toàn bộ heli trong vùng chuyển tiếp, làm giảm mạnh sự bức xạ làm nguội của plasma.[49] Vùng chuyển tiếp không xảy ra ở một độ cao được xác định chính xác. Thực vậy, nó hình thành một kiểu quầng với các đặc tính kiểu sắc quyển như gaisợi, và luôn chuyển động hỗn loạn.[40] Vùng chuyển tiếp không dễ được quan sát thấy từ bề mặt Trái Đất, mà thực tế chỉ có thể được quan sát thấy từ vũ trụ bằng các dụng cụ nhạy cảm với thành phần tử ngoại của quang phổ.[51]

Vành nhật hoa
Vành nhật hoa kéo dài ra lớp khí quyển bên ngoài của Mặt Trời, nó có thể tích lớn hơn cả Mặt Trời. Vành nhật hoa liên tục mở rộng vào vũ trụ hình thành nên gió Mặt Trời, lấp đầy toàn bộ Hệ Mặt Trời.[52] Vành nhật hoa hạ, rất gần bề mặt Mặt Trời, có mật độ phân tử khoảng 1015–1016/m3.[49][Ghi chú 1] Nhiệt độ trung bình của vành nhật hoa và gió Mặt Trời khoảng 1–2 triệu kelvin, tuy nhiên, trong những vùng nóng nhất nó khoảng 8–20 triệu kelvin. Tuy chưa tồn tại 1 lý thuyết đầy đủ để tính nhiệt độ vành nhật hoa, ít nhất một số lượng nhiệt của nó được biết có từ sự tái liên thông từ trường.[52]

Nhật quyển
Nhật quyển là khoảng trống xung quanh Mặt Trời, được lấp đầy bằng gió plasma Mặt Trời và kéo dài xấp xỉ khoảng 20 lần bán kính Mặt Trời (0,1 AU) ra các mép phía ngoài của Hệ Mặt Trời. Biên giới phía trong của nó được xác định là lớp mà tại đó dòng gió Mặt Trời trở nên superalfvénic — có nghĩa là nơi dòng chảy trở nên nhanh hơn tốc độ của sóng Alfvén.[53] Sự nhiễu loạn và các lực động lực học bên ngoài biên giới này không thể ảnh hưởng tới hình dạng của quầng Mặt Trời bên trong, bởi thông tin chỉ có thể di chuyển với tốc độ của các sóng Alfvén. Gió Mặt Trời đi ra bên ngoài liên tục xuyên qua Nhật quyển, hình thành nên trường điện từ Mặt Trời bên trong hình dạng xoắn ốc,[52] cho tới khi nó va chạm với nhật mãn với khoảng cách hơn 50 AU từ Mặt Trời. Tháng 12 năm 2004, tàu vũ trụ Voyager 1 đã vượt qua một dải chấn được cho là một phần của nhật mãn. Cả hai tàu Voyager đều ghi nhận mức độ hạt năng lượng cao khi chúng tiếp cận biên giới.

Từ trường
Xem thêm: Từ trường của các sao

Dải dòng điện nhật quyển phát triển ra toàn hệ Mặt Trời, và tạo ra sự ảnh hưởng của từ trường quay của Mặt Trời lên plasma trong vật chất giữa các hành tinh.[54]
Mặt Trời là một sao có hoạt động của từ trường. Nó có từ trường biến đổi mạnh mẽ hàng năm và đổi hướng sau mỗi 11 năm.[55] Từ trường của Mặt Trời tăng lên gây ra một số hiệu ứng gọi chung là hoạt động của Mặt Trời bao gồm vết đen trên bề mặt của Mặt Trời, vết sáng Mặt Trời, và các bức xạ trong gió Mặt Trời, chúng mang vật chất vào trong hệ Mặt Trời.[56] Các ảnh hưởng của hoạt động bức xạ này lên Trái Đất như cực quang ở các vĩ độ trung bình đến cao, và sự gián đoạn việc truyền sóng radio và điện năng. Hoạt động của Mặt Trời được cho là có vai trò quan rất lớn trong sự hình thành và tiến hóa của hệ Mặt Trời và làm thay đổi cấu trúc tầng điện ly của Trái Đất.[57]

Tất cả vật chất trong Mặt Trời đều ở thể khíplasma do có nhiệt độ cao. Điều này có thể làm cho vận tốc quay ở vùng xích đạo (khoảng 25 ngày) nhanh hơn ở các vùng có vĩ độ cao hơn (khoảng 35 ngày ở gần các cực). Vận tốc quay khác nhau ở các vĩ độ của Mặt Trời tạo ra các đường sức từ xoắn vào nhau theo thời gian, tạo ra các vòng hoa từ tường phun ra từ bề mặt của Mặt Trời và tạo ra các vết đen Mặt Trời và các tai lửa Mặt Trời (xem sự nối lại từ trường). Sự xoắn vào nhau này làm tăng quá trình phát sinh từ trường của Mặt Trời và gây ra sự đảo từ của Mặt Trời theo chu kỳ 11 năm.[58][59]

Từ trường của Mặt Trời mở rộng ra ngoài ranh giới của nó. Plasma trong gió Mặt Trời bị từ hóa mang từ trường của Mặt Trời vào không gian tạo ra từ trường giữa các hành tinh.[52] Vì plasma chỉ có thể chuyển động trên các đường sức từ, từ trường giữa các hành tinh được mở rộng xuyên tâm từ Mặt Trời ra ngoài không gian. Do trường từ ở trên và dưới xích đạo khác nhau về cực hướng vào và hướng ra khỏi Mặt Trời, nên tồn tại một lớp dòng điện mỏng trên mặt phẳng xích đạo được gọi là dải dòng điện nhật quyển (heliospheric current sheet).[52] Ở khoảng cách lớn, sự quay của Mặt Trời xoắn từ trường và dải dòng này thành cấu trúc giống xoắn ốc Archimedes gọi là xoắn ốc Parker.[52] Từ trường giữa các hành tinh mạnh hơn từ trường ở hai cực của Mặt Trời. Từ trường ở hai cực của Mặt Trời 50–400 μT (trong Quang quyển) giảm theo hàm mũ bậc ba của khoảng cách và đạt 0,1 nT ở Trái Đất. Tuy nhiên, theo các thăm dò từ tàu không gian cho thấy từ trường giữa các hành tinh ở vị trí của Trái Đất cao hơn khoảng 100 lần so với con số trên, vào khoảng 5 nT.[60]

Thành phần hóa học
Mặt Trời được cấu tạo chủ yếu bởi các nguyên tố hydroheli, các nguyên tố này chiếm tương ứng 74,9% và 23,8% khối lượng của Mặt Trời trong quang quyển.[61] Các nguyên tố nặng hơn được gọi là kim loại trong thiên văn học, chiếm ít hơn 2% khối lượng Mặt Trời. Trong đó phổ biến nhất là oxy (chiếm gần 1% khối lượng Mặt Trời), cacbon (0,3%), neon (0,2%), và sắt (0,2%).[62]

Thành phần hóa học của Mặt Trời thừa hưởng các nguyên tố từ vật chất giữa các sao khi nó hình thành: hydro và heli trong Mặt Trời được tạo ra từ tổng hợp hạt nhân Big Bang. Các kim loại này được tạo ra bởi tổng hợp hạt nhân sao khi kết thúc quá trình tiến hóa sao và trả các vật liệu của chúng về khoảng không giữa các sao trước khi Mặt Trời hình thành.[63] Thành phần hóa học của quang quyển thường được xem là đại diện cho các thành phần của hệ Mặt Trời nguyên thủy.[64] Tuy nhiên, khi Mặt Trời hình thành, heli và các nguyên tố nặng tích tụ trong quang quyển. Do đó, quang quyển ngày nay chứa ít heli và chỉ có khoảng 84% các nguyên tố nặng so với sao tổ tiên; sao tổ tiên có 71,1% hydro, 27,4% heli, và 1,5% kim loại.[61]

Bên trong Mặt Trời, các phản ứng tổng hợp hạt nhân làm biến đổi thành phần của nó do hidro biến thành heli, vì vậy phần trong cùng nhất của Mặt Trời hiện tại chỉ có khoảng 60% heli, còn hàm lượng kim loại phổ biến thì không đổi. Do phần bên trong Mặt Trời có hoạt động phóng xạ, chứ không phải đối lưu (xem cấu trúc ở trên), nên không có sản phẩm tổng hợp hạt nhân nào từ lõi đi vào quang quyển.[65]

Các nguyên tố nặng phổ biến trong Mặt Trời mô tả bên trên được đo đạc đồng thời bằng quang phổ trong quang quyển và bằng các vật chất trong thiên thạch không bị nung chảy. Các thiên thạch này được cho là có chứa thành phần của ngôi sao tiền Mặt Trời và không bị ảnh hưởng bởi sự tích tụ các nguyên tố nặng. Đó là hai cách đo đạc được nhiều người đồng ý nhất.[9]

Các nguyên tố nhóm sắt bị ion hóa
Trong thập niên 1970, nhiều nghiên cứu tập trung vào sự phong phú của các nguyên tố nhóm sắt trong Mặt Trời.[66][67] Mặc dù các nghiên cứu này mang lại nhiều ý nghĩa, nhưng việc xác định sự phong phú của các nguyên tố nhóm sắt (như cobanmangan) vẫn còn là khó khăn vào thời điểm đó do các cấu trúc siêu mịn của chúng.[66]

Một bộ hoàn chỉnh về độ mạnh dao động đầu tiên của các nguyên tố nhóm sắt bị ion hóa riêng lẻ được thực hiện thành công vào thập niên 1960,[68] và được nâng cấp vào năm 1976.[69] Năm 1978, sự phong phú về các nguyên tố thuộc nhóm sắt bị ion hóa đã được nhận dạng.[66]

Quan hệ sự phân tầng khối lượng giữa hành tinh và Mặt Trời
Nhiều tác giả khác nhau đề cập đến sự tồn tại của mối quan hệ phân tầng khối lượng giữa các thành phần đồng vị của Mặt Trời và khí trơ trên các hành tinh,[70] ví dụ như sự tương quan giữa thành phần đồng vị của hành tinh và Mặt Trời là NeXe.[71] Tuy nhiên, người ta tin rằng toàn bộ Mặt Trời có cùng thành phần như nhau trong khi bầu khí quyển của Mặt Trời vẫn trải rộng và ít nhất là đến năm 1983.[72] Năm 1983, người ta cho rằng có sự phân tầng trên Mặt Trời, chính vì vậy đã tạo ra mối quan hệ phân tầng giữa các thành phần đồng vị của hành tinh và gió Mặt Trời là các khí hiếm.[72]

Các chu kỳ trên Mặt Trời
Các vết đen Mặt Trời
Bài chi tiết: Vết đen Mặt Trời

Số liệu đo đạc chu kỳ mặt trời thay đổi trong vòng 30 năm gần đây
Khi quan sát Mặt Trời bằng các bộ lọc thích hợp, các đặc điểm dễ nhận ra ngay đó là các vết đen Mặt Trời, chúng là các khu vực bề mặt được xác định rõ ràng bởi vì chúng tối hơn các khu vực xung quanh do nhiệt độ của chúng thấp hơn. Các vết đen này là những vùng có hoạt động từ trường mạnh, ở đây sự đối lưu được điều khiển bởi các trường từ mạnh, nhằm giải phóng năng lượng từ bên trong Mặt Trời lên bề mặt của nó. Trường từ làm nóng phần lõi, tạo thành các vùng hoạt động đây chính là nguồn gây ra vết lóa Mặt Trời (solar flare) và phóng thích vật chất vành nhật hoa (CME). Các vết đen lớn nhất có thể vươn xa hàng chục ngàn km.[73]

Số lượng các vết đen có thể thấy được trên Mặt Trời thì không cố định, nhưng chúng thay đổi theo chù kỳ 11 năm hay còn gọi là chu kỳ Mặt Trời. Trong điều kiện bình thường, chỉ có vài vết đen có thể quan sát được, và hiếm khi quan sát được hết tất cả. Một số xuất hiện ở các vĩ độ lớn hơn. Khi diễn ra chu kỳ Mặt Trời, số lượng các vết đen tăng và chúng di chuyển gần hơn về phía xích đạo của Mặt Trời, hiện tượng này được miêu tả trong quy luật Spörer. Các vết đen luôn tồn tại thành cặp có cực từ đối nhau. Cực từ của vết đen xen kẽ mỗi chu kỳ Mặt Trời, vì thế nó sẽ là cực bắc từ trong một chu kỳ và sẽ là cực nam trong chu kỳ tiếp theo.[74]


Lịch sử quan sát các vết đen mặt trời trong vòng 250 năm gần đây, cho thấy chu kỳ mặt trời khoảng ~11 năm
Chu kỳ Mặt Trời có ảnh hưởng lớn đến thời tiết không gian, và cũng như khí hậu trên Trái Đất do độ sáng có mối quan hệ trực tiếp với hoạt động từ trường.[75] Cực tiểu hoạt động của Mặt Trời có xu hướng tương quan với nhiệt độ lạnh hơn, và lâu hơn so với các chu kỳ mặt trời trung bình có xu hướng tương quan đến nhiệt độ nóng hơn. Trong thế kỷ 17, chu kỳ mặt trời dường như đã ngưng hoàn toàn trong vài thập kỷ; có rất ít vết đen được quan sát trong giai đoạn này. Cũng trong giai đoạn này, hay còn gọi là cực tiểu Maunder hay thời kỳ băng hà nhỏ, châu Âu đã trải qua thời kỳ nhiệt độ rất lạnh.[76] Hoạt động cực tiểu vào thời kỳ trước đây được phát hiện thông qua việc phân tích vòng sinh trưởng của cây đã sinh sống vào thời gian nhiệt độ toàn cầu thấp hơn nhiệt độ trung bình.[77]

Chu kỳ dài
Một giả thuyết gần đây nêu rằng từ trường không ổn định trong lõi của Mặt Trời tạo ra sự dao động với chu kỳ 41.000 hoặc 100.000 năm. Điều này có thể cung cấp các dữ kiện để giải thích về thời kỳ băng hà hơn là chu kỳ Milankovitch.[78][79]

Vị trí và chuyển động trong dải Ngân Hà

Sự chuyển động của tâm tỉ cự của hệ Mặt Trời tương đối với Mặt Trời.

Geminga, phía trên bên trái và sao xung Con Cua.
Ảnh chụp trong phổ tia gamma
Sự chuyển động của Mặt Trời liên quan đến khối tâm của hệ Mặt Trời trở nên phức tạp do các nhiễu loạn từ các hành tinh. Cứ mỗi vài trăm năm chuyển động này lại thay đổi giữa cùng hướng và ngược hướng với các thiên thể khác.[80] Mặt Trời nằm gần rìa trong của nhánh Orion của Ngân Hà, trong đám mây liên sao Địa phương hoặc vành đai Gould, với khoảng cách giả thuyết 7,5–8,5 kpc (25.000–28.000 năm ánh sáng) tính từ tâm Ngân Hà,[81][82][83][84] nằm bên trong Bong bóng địa phương, một không gian khí nóng loãng, có thể được tạo ra từ phần còn sót lại của siêu tân tinh, Geminga, một nguồn phát xạ tia gamma sáng chói.[85] Khoảng cách giữa nhánh địa phương và nhánh gần đó là nhánh Perseus vào khoảng 6.500 năm ánh sáng.[86]

Điểm apec của đường đi của Mặt Trời là hướng mà mặt trời đi qua không gian của thiên hà. Hướng chung của chuyển động của Mặt Trời thẳng về sao Vega gần chòm sao Hercules, với góc gần 60 độ khối (sky degree) so với hướng của tâm Ngân Hà. Nếu một người nào đó quan sát Mặt Trời từ Alpha Centauri, hệ sao gần nhất, Mặt Trời sẽ xuất hiện trong chòm sao Cassiopeia.[87]

Quỹ đạo của Mặt Trời xung quanh Ngân Hà được cho là dạng elip có một chút nhiễu do các nhánh xoắn ốc và sự phân bố khối lượng không đồng nhất của thiên hà. Thêm vào đó, Mặt Trời dao động lên và xuống so với mặt phẳng thiên hà khoảng 2,7 lần trong một quỹ đạo. Đều này tương tự với một dao động điều hòa đơn giản không có lực kéo nào. Đã từng có trang luận rằng sự chuyển động của Mặt Trời xuyên qua các nhánh xoắn ốc mật độ cao hơn đôi khi bằng với các sự kiện tuyệt chủng lớn trên Trái Đất, có lẽ là do làm tăng các sự kiện va chạm (impact event).[88] Hệ Mặt Trời mất khoảng 225–250 triệu năm để hoàn thiện một vòng quỹ đạo của nó trong Ngân Hà (hay một năm ngân hà),[89] vì vậy, tổng số vòng quay của Mặt Trời quanh Ngân Hà là khoảng 20–25 trong cuộc đời đã qua của nó. Vận tốc quỹ đạo của hệ Mặt Trời so với tâm của Ngân Hà vào khoảng 251 km/s.[19] Với vận tốc này, nó mất khoảng 1.400 năm để hệ Mặt Trời đi được một khoảng cách của 1 năm ánh sáng, hay 8 ngày để đi được 1 AU.[90]

Các vấn đề về các học thuyết
Neutrino Mặt Trời
Trong một vài năm số lượng neutrino electron Mặt Trời được phát hiện trên Trái Đất từ 1⁄3 đến 1⁄2 so với số lượng dự đoán bằng Mô hình chuẩn của Mặt Trời. Kết quả bất thường này được đặt tên là vấn đề neutrino Mặt Trời. Các giả thuyết đưa ra để giải quyết vấn đề này hoặc là sự giảm nhiệt độ bên trong Mặt Trời làm cho dòng nơtrino thấp hơn, hoặc là khẳng định rằng các nơtrino electron có thể dao động liên quan đến các neutrino tauneutrino muon, mà hai loại này không thể nhận biết được khi chúng chuyển động giữa Mặt Trời và Trái Đất.[91] Một vài quan sát về nơtrino đã bắt đầu thực hiện trong thập niên 1980 để đo dòng nơtrino Mặt Trời với độ chính xác có thể, bao gồm Đài quan sát Neutrino SudburyKamiokande.[92] Các kết quả cho thấy các nơtrinos có khối lượng tĩnh rất nhỏ và thực tế là có sự dao động.[93][39] Ngoài ra, vào năm 2001 dự án Đài quan sát Neutrino Sudbury đã có thể nhận dạng 3 loại nơtrino một cách trực tiếp, và thấy rằng tốc độ phát xạ tổng số các nơtrino của Mặt Trời phù hợp với Mô hình chuẩn Mặt Trời, mặc dù nó phụ thuộc vào năng lượng nơtrino làm cho có 1/3 nơtrino được phát hiện trên Trái Đất là loại nơtrino electron.[92][94] Tỷ lệ này phù hợp với dự đoán theo hiệu ứng Mikheyev-Smirnov-Wolfenstein (hay còn gọi là hiệu ứng vật chất). Hiệu ứng này miêu tả sự dao động của vật chất, và nó được xem là một lời giải cho vấn đề này.[92]

Nhiệt độ vành nhật hoa
Bài chi tiết: Vành nhật hoa
Nhiệt độ bề mặt Mặt Trời (quang quyển) vào khoảng 6.000 K. Bên trên nó là vành nhật hoa, nhiệt độ lên đến 1 - 2 triệu K.[50] Nhiệt độ của vành nhật hoa cao cho thấy rằng nó đã bị nung nóng bởi một cơ chế nào đó khác với sự đối lưu nhiệt trực tiếp từ quang quyển.[52]

Người ta cho rằng năng lượng cần thiết để làm nóng vành nhật hoa được cung cấp bởi sự chuyển động hỗn loạn trong đới đối lưu nằm dưới quang quyển, và có hai cơ chế chính đã được đề xuất để giải thích về nhiệt độ cao của vành nhật hoa.[50]

  1. Thứ nhất là nung nóng bằng sóng, các sóng từ thủy động hoặc trọng lực được tạo ra bởi sự rối trong đới đối lưu.[50] Các sóng này chuyển động hướng lên và bị tán xạ vào vành nhật hoa, tích tụ năng lượng của chúng trong lớp không khí xung quanh ở dạng nhiệt.[95]
  2. Thứ hai là nung nóng bởi từ trường, theo đó năng lượng từ được hình thành một cách liên tục bởi sự chuyển động của quang quyển và được giải phóng thông qua tái liên kết từ trường ở dạng các vết sáng Mặt Trời lớn và vô số các dạng tương tự với kích thước nhỏ hơn.[96]
Hiện tại, chưa có câu trả lời rõ ràng rằng có phải các sóng ảnh hưởng đến cơ chế nung nóng này hay không. Tất cả các sóng trừ sóng Alfvén đã được phát hiện là tán xạ hoặc phản xạ trước khi chúng chạm đến vành nhật hoa.[97] Thêm vào đó, các sóng Alfvén không dễ dàng tán xạ vào vành nhật hoa. Các nghiên cứu hiện tại tập trung theo hướng cơ chế nung nóng bởi các vết sáng mặt trời.[50]

Sao trẻ
Bài chi tiết: Nghịch lý Mặt Trời trẻ
Các mô hình lý thuyết về sự phát triển của Mặt Trời cho rằng cách đây khoảng 3,8 đến 2,5 tỉ năm, vào liên đại Thái Cổ, Mặt Trời chỉ sáng bằng khoảng 75% so với hiện nay. Như một ngôi sao yếu nó không thể duy trì lượng nước ổn định trên bề Mặt Trái Đất, và sự sống đã có thể không phát triển. Tuy nhiên, các chứng cứ địa chất chứng minh rằng Trái Đất đã trải qua ở chế độ nhiệt độ tương đối ổn định trong suốt thời kỳ lịch sử của nó, và rằng Trái Đất trẻ vào thời điểm nào đó trong quá khứ đã ấm hơn hiện nay. Các cuộc tranh luận giữa các nhà khoa học rằng khí quyển của Trái Đất trẻ chứa nhiều khí nhà kính (như carbon dioxide, metanamoniac) hơn hiện tại, các khí này giữ nhiệt đủ để làm cân bằng nhiệt độ Trái Đất từ một lượng nhỏ năng lượng mặt trời đi đến Trái Đất.[98]

Các dị thường hiện tại
Mặt Trời hiện tại đang thể hiện những bất thường theo nhiều cách.[99][100]

  • Nó đang trong giai đoạn giữa của thời kỳ ít vết đen mặt trời bất thường, thời kỳ này kéo dài hơn và tỷ lệ các ngày không có vết đen cao hơn bình thường; từ tháng 5 năm 2008, các dự đoán về sự tăng cường hoạt động của vết đen sắp xảy ra đã bị phủ nhận.
  • Có thể đo đạc được độ mờ; lượng phát xạ giảm 0,02% ở các bước sóng khả kiến và 6% ở các bước sóng EUV so với các mức ở thời kỳ tối thiểu vết đen gần nhất.[101]
  • Qua hai thập kỷ gần đây, vận tốc gió mặt trời giảm 3%, nhiệt độ giảm 13%, và mật độ giảm 20%.[102]
  • Cường độ từ trường mặt trời giảm phân nửa so với thời kỳ thấp nhất cách đây 22 năm. Toàn bộ nhật quyển lấp đầy trong hệ Mặt Trời đã bị co lại, làm tăng độ bức xạ vũ trụ lên khí quyển Trái Đất.
Thám hiểm Mặt Trời
Những hiểu biết trước đây

Thần Mặt Trời Helios cưỡi xe ngựa Chariot trong hình dung của người Hy Lạp cổ đại
Tranh của Johann Baptist thế kỷ 18
Hiểu biết cơ bản nhất của nhân loại về Mặt Trời đó là một đĩa sáng trong bầu trời, khi nó xuất hiện thì gọi là ban ngày, còn khi nó biến mất là ban đêm. Trong các nền văn hóa cổ đại và tiền sử, Mặt Trời được xem là thần Mặt Trời hay các hiện tượng siêu nhiên khác. Thờ cúng Mặt Trời là tâm điểm của các nền văn minh như IncaNam MỹAztec thuộc México ngày nay. Một số tượng đài cổ được xây dựng với ý tưởng kết hợp với các hiện tượng liên quan đến Mặt Trời; ví dụ, các cự thạch đánh dấu một cách chính xác đông chí hoặc hạ chí (các cự thạch nổi tiếng phân bố ở Nabta Playa, Ai Cập, Mnajdra, Malta và ở Stonehenge, Anh). Vào thời kỳ La Mã, ngày sinh của Mặt Trời là ngày nghỉ để kỉ niệm Sol Invictus chỉ sau đông chí mà ngày nay gọi là Christmas. Dựa theo các sao cố định, Mặt Trời xuất hiện từ Trái Đất xoay một lần mất một năm theo mặt phẳng hoàng đạo xuyên qua mười hai chòm sao, và vì thế các nhà thiên văn học Hy Lạp cho rằng nó là một trong 7 hành tinh (Hy Lạp planetes nghĩa là "đi lang thang"), sau đó nó được đặt tên cho 7 ngày trong tuần trong một số ngôn ngữ.[103][104][105]

Sư hiểu biết cùng với tiến bộ khoa học
Trước Công nguyên
Vào đầu thiên niên kỷ 1 TCN, các nhà thiên văn học Babylon đã quan sát thấy rằng sự chuyển động của Mặt Trời theo đường hoàng đạo là không đồng nhất, mặc dù họ không biết tại sao như thế; với kiến thức ngày nay thì đó là do Trái Đất chuyển động theo quỹ đạo elip quanh Mặt Trời, khi đó Trái Đất sẽ chuyển động nhanh hơn khi nó ở gần Mặt Trời tại điểm cận nhật và chậm hơn khi nó ở xa điểm viễn nhật.[106]


Anaxagoras
Một trong những người tiên phong nêu ra lời giải thích khoa học về Mặt Trời là nhà triết học Hy Lạp Anaxagoras (500-428 TCN). Ông cho rằng Mặt Trời là quả cầu lửa kim loại khổng lồ, thậm chí lớn hơn Peloponnesus, và không phải là xe ngựa chariot của thần Mặt Trời Helios.[107] Khi giảng về vấn đề dị giáo này, ông đã bị bỏ tù bởi nhà cầm quyền và bị tuyên án tử hình, mặc dù sau đó ông được phóng thích bởi sự can thiệp của Pericles. Sau đó hai thế kỷ, vào thế kỷ 3 TCN nhà toán học, thi sĩ, thiên văn học Hy Lạp Eratosthenes đã ước tính khoảng cách giữa Trái Đất và Mặt Trời vào khoảng "400 vạn và 80.0000 thước đo tầm xa (stadia)", việc giải nghĩa vẫn chưa rõ ràng, nó ám chỉ hoặc 4.080.000 stadia (755.000 km) hoặc 804.000.000 stadia (148 đến 153 triệu km); con số sau là chính xác với sai số vài phần trăm.

Công nguyên
Vào thế kỷ 1, nhà toán học, thiên văn học xứ Alexandria Ptolemy đã ước tính khoảng cách này gấp 1.210 lần bán kính Trái Đất.[108] Vào thế kỷ 8, nhà toán học, thiên văn học người Ba Tư Yaqūb ibn Tāriq đã ước tính khoảng cách giữa Trái Đất và Mặt Trời gấp 8.000 lần bán kính Trái Đất, một con số lớn nhất về đơn vị thiên văn cho đến thời điểm đó.[109]

Những đóng góp cho thiên văn học của người Ả rập như Albatenius phát hiện rằng hướng độ lệch tâm của Mặt Trời đang thay đổi,[110] và Ibn Yunus quan sát hơn 10.000 vị trí của Mặt Trời trong nhiều năm bằng thiết bị đo độ cao thiên thể.[111] Sự chuyển động của Sao Kim được Avicenna quan sát đầu tiên vào năm 1032 và ông kết luận rằng Sao Kim nằm gần Trái Đất hơn Mặt Trời,[112] còn quan sát đầu tiên về sự chuyển động của Sao Thủy do Ibn Bajjah thực hiện vào thế kỷ 12.[113] Nhà vật lý Ả rập, Alhazen, đã nghiên cứu các đặc điểm của ánh sáng Mặt Trời bằng các thí nghiệm với camera trong buồng tối obscura, được miêu tả trong quyển Sách quang học (1021), và đã minh họa rằng Mặt Trời là nguồn cung cấp ánh sáng cho Mặt Trăng.[114] Để tạo nên công trình của ông vào thế kỷ 13, Qutb al-Din al-Shirazi và Theodoric của Freiberg đã đưa ra các giải thích chính xác về hiện tượng cầu vồng, còn Kamāl al-Dīn al-Fārisī đã xác nhận thông qua các thí nghiệm bằng camera obscura rằng màu sắc của hiện tượng cầu vồng là sự phân tán của ánh sáng Mặt Trời.[115][116][117][118] Trong thế kỷ 13, nhà thiên văn học đạo Hồi Maghribi đã ước tính đường kính Mặt Trời khoảng 255 lần đường kính Trái Đất,[119] con số này lớn gấp đôi con số hiện tại được chấp nhận.

Thuyết nhật tâm[sửa | sửa mã nguồn]

Mô hình hệ mặt trời với mặt trời ở tâm của Copernicus
Giả thuyết rằng Mặt Trời là trung tâm của quỹ đạo chuyển động của các hành tinh được Aristarchus của Samos (310-230 TCN) đưa ra vào thế kỷ 3 TCN, và sau đó Seleucus của Seleucia cũng theo thuyết này (xem thuyết Nhật tâm). Quan điểm triết học quan trọng này đã được phát triển thành mô hình toán học dự đoán một cách hoàn chỉnh về hệ nhật tâm vào thế kỷ 16 bởi Nicolaus Copernicus. Vào đầu thế kỷ 17, việc phát minh ra kính viễn vọng đã cho phép các quan sát chi tiết hơn về vết đen Mặt Trời do Thomas Harriot, Galileo Galilei và các nhà thiên văn khác thực hiện. Galileo đã thực hiện một số quan sát vết đen Mặt Trời bằng kính viễn vọng và thừa nhận rằng chúng nằm trên bề mặt của Mặt Trời hơn là các vật thể nhỏ chuyển động qua khoảng không giữa Trái Đất và Mặt Trời.[120] Các vết đen Mặt Trời cũng được các nhà thiên văn Trung Quốc quan sát vào thời nhà Hán (206 TCN - 220 CN), họ đã duy trì ghi chép các quan sát này trong vài thế kỷ. Averroes cũng đưa ra một miêu tả về các vết đen Mặt Trời trong thế kỷ 12.[121]

Năm 1672 Giovanni CassiniJean Richer xác định được khoảng cách đến Sao Hỏa và đã tính được khoảng cách đến Mặt Trời. Isaac Newton quan sát ánh sáng Mặt Trời bằng lăng kính, và thấy nó được tạo thành từ nhiều màu sắc,[122] trong khi đó vào năm 1800 William Herschel phát hiện ra bức xạ hồng ngoại nằm gần ánh sáng đỏ trong quang phổ của Mặt Trời.[123] Thập niên 1800 phát triển mạnh các kính quang phổ nghiên cứu về Mặt Trời, và Joseph von Fraunhofer đã thực hiện các quan sát đầu tiên về các vạch hấp thụ quang phổ, vạch mạnh nhất vẫn thường được gọi theo tên của ông là vạch Fraunhofer. Khi mở rộng dải quang phổ của sánh sáng từ Mặt Trời thì có một số màu bị mất được phát hiện.

Thiên văn học hiện đại
Vào những năm đầu tiên của kỷ nguyên khoa học hiện đại, nguồn năng lượng Mặt Trời vẫn là vấn đề còn nhiều bí ẩn. Lord Kelvin đã đề nghị rằng Mặt Trời là một vật thể lỏng đang lạnh đi một cách từ từ vì vậy nó đang phát ra nhiệt dự trữ bên trong lòng nó.[124] Sau đó, Kelvin và Hermann von Helmholtz đưa ra cơ chế Kelvin-Helmholtz để giải thích lượng năng lượng tỏa ra này. Tuy nhiên, kết quả tính tuổi Mặt Trời chỉ có 20 triệu năm, một con số rất nhỏ so với các tính toán mà các dấu hiệu địa chất lúc đó đưa ra là ít nhất 300 triệu năm.[124] Năm 1890 Joseph Lockyer, người đã phát hiện ra heli trong quang phổ của Mặt Trời, đã đưa ra giả thuyết thiên thạch về sự hình thành và tiến hóa của Mặt Trời.[125]

Mãi cho đến năm 1904 thì vấn đề này mới được giải quyết. Ernest Rutherford cho rằng lượng bức xạ Mặt Trời có thể đã được duy trì bởi một nguồn nhiệt bên trong nó, và đó là hoạt động phân rã phóng xạ.[126] Tuy nhiên, Albert Einstein là người đã đưa ra mối quan hệ giữa nguồn năng lượng phát ra từ Mặt Trời với phương trình cân bằng khối lượng-năng lượng E = mc2.[127]

Năm 1920, Sir Arthur Eddington đề xuất rằng áp suất và nhiệt động trong lõi của Mặt Trời có thể phát sinh một phản ứng hợp hạch hạt nhân theo đó các hạt nhân hidro (proton) hợp lại tạo ra hạt nhân heli, quá trình này sinh ra năng lượng đồng thời sẽ làm giảm dần khối lượng.[128] Lượng hdro chiếm ưu thế trong Mặt Trời được Cecilia Payne xác nhận vào năm 1925. Quan điểm lý thuyết về tổng hợp hạt nhân được các nhà vật lý thiên văn Subrahmanyan ChandrasekharHans Bethe phát triển vào thập niên 1930. Hans Bethe đã tính toán chi tiết hai phản ứng sinh năng lượng chính trên Mặt Trời.[129][130]

Sau cùng, một bài báo có ảnh hưởng lớn của Margaret Burbidge được xuất bản năm 1957 với tựa là "Sự tổng hợp các nguyên tố của các Sao" ("Synthesis of the Elements in Stars").[131] Bài báo đã minh hoạ một cách thuyết phục rằng hầu hết các nguyên tố trong vũ trụ đã và đang được tổng hợp bằng các phản ứng hạt nhân bên trong các ngôi sao, giống như Mặt Trời.

Các nhiệm vụ khám phá không gian
30px-Commons-logo.svg.png
Wikimedia Commons có thư viện hình ảnh và phương tiện truyền tải về Tàu SOHO
30px-Commons-logo.svg.png
Wikimedia Commons có thư viện hình ảnh và phương tiện truyền tải về Tàu Genesis

Hình ảnh Mặt Trăng đi ngang qua Mặt Trời nhìn từ tàu STEREO-B ngày 25 tháng 2, 2007. Do STEREO-B cũng di chuyển quanh Mặt Trời theo quỹ đạo Trái Đất và có khoảng cách đến Mặt Trăng xa hơn so với khoảng cách từ Trái Đất, Mặt Trăng trông nhỏ hơn so với Mặt Trời [132]
Các vệ tinh đầu tiên được thiết kế để giám sát Mặt Trời là Pioneer 5, 6, 7, 8 và 9 của NASA, được phóng lên trong khoảng 1959 - 1968. Các vệ tinh mang máy dò này quay quanh Mặt Trời với khoảng cách tương tự như vệ tinh bay quanh Trái Đất, và thực hiện các đo đạc chi tiết đầu tiên về gió Mặt Trời và trường từ Mặt Trời. Pioneer 9 vận hành trong thời gian tương đối dài và truyền dữ liệu về đến năm 1987.[133]

Trong thập niên 1970, hai phi thuyền Helios và Skylab cùng với kính thiên văn Apollo cung cấp cho các nhà khoa học những dữ liệu mới về gió Mặt Trời và vành nhật hoa. Hai bộ phận thăm dò Helios 1 and 2 kết hợp giữa Hoa Kỳ và Đức cùng nghiên cứu gió Mặt Trời bay trong quỹ đạo của Sao Thủy ở điểm cận nhật.[134] Trạm không gian Skylab được NASA phóng năm 1973 gồm các mô-đun quan sát Mặt Trời gọi là Apollo Telescope Mount, mô-đun này được vận hành bởi các nhà du hành vũ trụ định cư trên đó.[51] Skylab đã thực hiện các quan sát thời gian đầu tiên về các cùng Mặt Trời chuyển động qua và sự phát xạ tia tử ngoại từ vành nhật hoa.[51] Các phát hiện bao gồm các giám sát đầu tiên về sự phát xạ vật chất vành nhật hoa, còn gọi là "coronal transients", và các hố nhật hoa, ngày nay cho thấy rằng nó liên quan đến gió Mặt Trời.[134]

Năm 1980, phi vụ Solar Maximum Mission được phóng bởi NASA. Phi thuyền này được thiết kế để giám sát các tia gamma, tia XUV từ các vết lóa Mặt Trời trong suốt thời gian hoạt động của Mặt Trời mạnh và độ sáng Mặt Trời. Tuy nhiên, chỉ một vài tháng sau khi phóng, một sự cố về điện làm cho đầu dò chuyển sang chế độ dự phòng, và phải mất 3 tháng hoạt động ở chế độ này. Năm 1984 nhiệm vụ Space Shuttle Challenger STS-41 đã khôi phục vệ tinh và sửa hệ thống điện trước khi đưa nó trở vào quỹ đạo. Solar Maximum Mission đã cung cấp hàng ngàn tấm ảnh về vành nhật hoa trước khi trở về khí quyển Trái Đất tháng 6 năm 1989.[135]

Một trong những chưong trình mang nhiệm vụ quan trọng là phóng "Đài quan sát Mặt Trời và nhật quyển" (SOHO-Solar and Heliospheric Observatory) vào ngày 2 tháng 12 năm 1995 do Cơ quan Vũ trụ châu Âu (ESA) và Cục Quản trị Hàng không và Không gian Quốc gia Hoa Kỳ (NASA) hợp tác.[51] Soho nằm tại một điểm khá đặc biệt trong không gian, điểm Lagrange L1. Điểm Lagrange là điểm nằm giữa Trái Đất và mặt trời, cách Trái Đất chừng 1,6 triệu km, nơi có điểm trọng lực cân bằng giữa các hành tinh.

Sự giàu có của các nguyên tố trong quang quyển được biết rất rõ từ các nghiên cứu quang phổ thiên văn, nhưng thành phần bên trong Mặt Trời thì được biết ít hơn. Tàu Genesis, được thiết kế để lấy mẫu gió Mặt Trời, cho phép các nhà thiên văn có thể trực tiếp đo đạc thành phần vật chất của Mặt Trời. Nó trở lại Trái Đất năm 2004 và lẽ ra sẽ được phân tích, nhưng nó đã bị hư hại nặng khi hạ cánh do không mở khi đi vào bầu khí quyển của Trái Đất.[136][137]
 
Hố đen là một vùng trong không gian có trường hấp dẫn lớn đến mức lực hấp dẫn của nó không để cho bất cứ một dạng vật chất nào - kể cả ánh sáng có thể thoát ra khỏi mặt biên của nó (chân trời sự kiện). Hố đen tồn tại ở nhiều dạng khác nhau, từ những vật thể vũ trụ có khối lượng chỉ cỡ ngôi sao cho tới những “quái vật” có khối lượng siêu lớn nằm ở trung tâm của các dải thiên hà. Dưới đây là danh sách 10 trong số những hố đen tiêu biểu nhất.

Hố đen lớn nhất
NGC3842.jpg


Các hố đen nằm ở trung tâm các thiên hà có khối lượng lớn gấp hàng triệu thậm chí là hàng tỉ lần khối lượng của Mặt trời. Các nhà khoa học mới đây đã phát hiện ra hố đen lớn nhất được biết đến cho tới nay ở hai thiên hà cận kề nhau.

Một trong số chúng được đặt tên là NGC 3842 - thiên hà sáng nhất trong cụm thiên hà Leo cách chúng ta khoảng 320 triệu năm ánh sáng, là nơi tồn tại của hố đen lớn có khối lượng gấp 9,7 tỉ lần khối lượng mặt trời. Thiên hà còn lại, NGC 4889, là thiên hà sáng nhất trong cụm thiên hà Coma, cách chúng ta 335 triệu năm ánh sáng, có chứa một hố đen có khối lượng xấp xỉ hố đen trong thiên hà NGC 3842. Tầng ngoài cùng của hố đen hay còn gọi là “chân trời sự kiện” của hai hố đen này rộng gấp 5 lần khoảng cách từ Mặt trời tới sao Diêm Vương và chúng nặng gấp 2500 lần hố đen nằm ở trung tâm dải thiên hà Milky Way có tầng ngoài cùng chỉ bằng một phần năm quỹ đạo của sao Thủy.

Hố đen nhỏ nhất
IGRJ170913624.jpg


Hố đen nhỏ nhất được con người biết đến cho nay là trời có tên khoa học là IGR J17091-3624, có khối lượng bằng khoảng 1 phần ba khối lượng Mặt trời - gần chạm tới giới hạn trên lý thuyết để một hố đen có thể tồn tại ổn định. Tuy nhỏ bé nhưng chúng cực kì dữ dội, khi sức gió có thể đạt tới 20 triệu mph- nhanh gấp 10 lần tốc độ từ hố đen có khối lượng ngôi sao mà con người đã quan sát được cho tới nay.

Hố đen “ăn” lẫn nhau
ngc3393.jpg


Hố đen hút tất cả thứ gì “chẳng may” tới gần chúng, và việc hố đen nuốt chửng hố đen khác cũng chẳng phải ngoại lệ. Các nhà khoa học mới đây đã phát hiện ra hố đen to lớn bất thường ở trung tâm dải một dải thiên hà bị hố đen lớn hơn ở thiên hà khác “tiêu diệt”.

Khám phá này mới chỉ là trường hợp đầu tiên. Các nhà thiên văn học đã từng chứng kiến những giai đoạn cuối cùng khi các thiên hà có khối lượng tương đương hợp nhất nhưng sự hợp nhất giữa những thiên hà với thiên hà đồng hành nhỏ hơn vẫn hoài lẩn tránh các nhà khoa học. Sử dụng đài quan sát Chandra X ray của NASA, các nhà khoa học đã phát hiện 2 hố đen nằm ở trung tâm thiên hà NGC 3393, với một hố đen lớn gấp 30 khối lượng Mặt trời và hố đen còn lại có khối lượng ít nhất là lớn gấp 1 triệu lần khối lượng Mặt trời.

Hố đen phụt “đạn”
H1743322.jpg


Hố đen nổi tiếng với khả năng hút mọi thứ nhưng các nhà khoa học còn phát hiện ra rằng chúng cũng có thể phụt ra vật chất . Các quan sát đối với hố đen H1743-322lớn gấp 5 đến 10 lần khối lượng Mặt trời nằm cách chúng ta 28000 năm ánh sáng, đã hé lộ rằng nó có thể hút vật chất khỏi ngôi sao gần đó rồi bắn những "viên đạn" khí ra ngoài với tốc độ gần bằng 1/4 vận tốc ánh sáng.

Hố đen lớn tuổi nhất
ULASJ11200641.jpg


Hố đen lớn tuổi nhất, là ULAS J1120+0641, được sinh ra từ 770 triệu năm sau khi vụ nổ Big Bang tạo ra thiên hà của chúng ta. Hố đen này nặng gấp 2 tỉ lần Mặt trời. Nhưng làm thế nào mà hố đen lại trở nên vô cùng lớn như vậy ngay sau vụ nổ Big bang vẫn là bí ẩn đối với giới khoa học.

Hố đen sáng nhất
quasar3c273.jpg


Dù lực hút trọng trường từ các hố đen đến nỗi ánh sáng không thể thoát ra được, chúng cũng tạo nên các quasar - các vật thể sáng nhất, mạnh mẽ và tích cực vận động nhất trong thiên hà. Khi các hố đen siêu lớn nằm ở trung tâm thiên hà chúng hút khí và bụi ở xung quanh và phun ra một lượng năng lượng khổng lồ. Quasar sáng nhất chúng ta có thể quan sát được là 3C 273, cách chúng ta 3 tỉ năm ánh sáng.

Hố đen “lang bạt”
SDSSJ09272943.jpg


Khi các thiên hà va chạm, hố đen có thể thoát ra khỏi nơi xảy ra va chạm và du hành lang thang trong vũ trụ. Hố đen như vậy đầu tiên được biết tới là SDSSJ0927+2943, nặng xấp xỉ 600 triệu lần mặt trời và di chuyển trong không gian với tốc độ 5.9 triệu mph. Có tới hàng trăm hố đen đang lang thang khắp thiên hà Milky Way.

Hố đen khối lượng trung bình
hlx-1.jpg


Các nhà khoa học từ lâu đã đề xuất rằng hố đen có 3 kích cỡ là nhỏ, trung bình, và lớn. Một cách tương đối, các hố đen nhỏ có thể nặng gấp vài mặt trời là chuyện bình thường, trong khi những hố đen siêu lớn nặng gấp hàng triệu cho tới hàng tỉ lần mặt trời được cho nằm ở ở trung tâm các thiên hà.

Tuy nhiên, các hố đen có khối lượng trung bình vẫn lẫn tránh các nhà khoa học suốt nhiều năm qua. Mãi gần đây, họ mới phát hiện ra một hố đen khối lượng trung bình, HLX-1 lớn gấp 20000 lần mặt trời và cách Trái Đất 290 triệu năm ánh sáng. Các hố đen kích cỡ trung bình là nền tảng để hình thành các siêu hố đen, vì vậy nghiên cứu chúng sẽ giúp chúng ta hiểu thêm về sự hình thành và phát triển của những con quái vật của vũ trụ cũng như các thiên hà.

Hố đen tự quay nhanh nhất
GRS1915105.jpg


Hố đen có thể tự quay với tốc độ đáng kinh ngạc. Hố đen GRS 1915 +105, trong chòm sao Aquila cách Trái đất khoảng 35.000 năm ánh sáng, quay hơn 950 lần mỗi giây. Bất cứ thứ gì lọt vào bề mặt của hố đen còn gọi là chân trời sự kiện có thể quay với tốc độ 333 triệu mph, tức gần bằng một nửa tốc độ ánh sáng.

Mô phỏng hố đen
mophonghoden.jpg


Các hố đen cách quá xa Trái Đất, làm cho việc thu thập thông tin để tìm hiểu bí ẩn về chúng trở nên vô cùng khó khăn. Tuy nhiên, các nhà nghiên cứu hiện đang tái tạo lại các tính chất bí ẩn của lỗ đen trên mặt bàn. Ví dụ, các hố đen có lực hấp dẫn quá mạnh đến nỗi không gì, kể cả ánh sáng, có thể thoát ra sau khi rơi xuống qua một biên giới được gọi là chân trời sự kiện. Các nhà khoa học đã tạo ra một chân trời sự kiện nhân tạo trong phòng thí nghiệm bằng cách sử dụng sợi quang học. Họ cũng đã tái tạo cái gọi là bức xạ Hawking để thoát khỏi lỗ đen.
 
×
Quay lại
Top Bottom